Cowal Gold Operations

Water Management Plan

July 2018
COWAL GOLD OPERATIONS
WATER MANAGEMENT PLAN

JULY 2018
Project No. HAL-02-07
Document No. WMP-U
ID: 00870313
Revision Status Register

<table>
<thead>
<tr>
<th>Section/Page/Annexure</th>
<th>Revision Number</th>
<th>Amendment/Addition</th>
<th>Distribution</th>
<th>DP&E Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>SWMP October 2003 Document No: SWMP-M (71263)</td>
<td>Original Site Water Management Plan (SWMP)</td>
<td>DLWC, EPA, DIPNR</td>
<td>October 2003</td>
</tr>
<tr>
<td>All</td>
<td>Addendum dated September 2004 Document No: 71195</td>
<td>Addendum to reflect temporary management of water from the Bland Creek Palaeochannel borefield and temporary management of saline water during the development of the open pit dewatering bores.</td>
<td>DLWC, EPA, DIPNR</td>
<td>December 2004</td>
</tr>
<tr>
<td>All</td>
<td>Addendum dated October 2006 Document No: 71207</td>
<td>Addendum to reflect Development Consent as modified on 23 August 2006.</td>
<td>DNR, DEC, DoP</td>
<td>December 2006</td>
</tr>
<tr>
<td>All</td>
<td>Revised SWMP November 2010 Document No: SWMP-Q (373069)</td>
<td>Revised to reflect Development Consent as modified on 10 March 2010.</td>
<td>DP&I, NOW, DECCW</td>
<td>-</td>
</tr>
<tr>
<td>All</td>
<td>Revised SWMP November 2011 Document No: SWMP-R (403032)</td>
<td>Revised to reflect comments received from the DP&I in August 2012.</td>
<td>DP&I, NOW and EPA</td>
<td>-</td>
</tr>
<tr>
<td>All</td>
<td>Revised SWMP dated August 2013 Document No. SWMP-S (685079)</td>
<td>Revised to address comments received from the NOW and to incorporate the long-term strategy for decommissioning of water management structures at the CGM.</td>
<td>DP&I</td>
<td>Approval of the SWMP remained pending up until the NSW Minister for Planning granted approval of the CGM’s modified Development Consent on 22 July 2014.</td>
</tr>
<tr>
<td>All</td>
<td>WMP dated July 2018 Document No: WMP-U (870313))</td>
<td>WMP revised in accordance with Development Consent Condition 9.1(c)(v) to reflect Development Consent as modified on 7 February 2017.</td>
<td>DPI-Water, EPA and DP&E</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 OBJECTIVES AND SCOPE</td>
<td>7</td>
</tr>
<tr>
<td>1.1.1 Objectives</td>
<td>7</td>
</tr>
<tr>
<td>1.1.2 Scope</td>
<td>7</td>
</tr>
<tr>
<td>1.2 STRUCTURE OF THIS WMP</td>
<td>8</td>
</tr>
<tr>
<td>2 LEGISLATIVE AND APPROVAL REGIME</td>
<td>9</td>
</tr>
<tr>
<td>2.1 DEVELOPMENT CONSENT CONDITIONS</td>
<td>9</td>
</tr>
<tr>
<td>2.2 CONDITIONS OF MINING AUTHORITY MINING LEASE 1535</td>
<td>9</td>
</tr>
<tr>
<td>2.3 ENVIRONMENT PROTECTION LICENCE CONDITIONS</td>
<td>10</td>
</tr>
<tr>
<td>2.4 RELEVANT LEGISLATION</td>
<td>10</td>
</tr>
<tr>
<td>3 OVERVIEW OF SITE HYDROLOGY</td>
<td>11</td>
</tr>
<tr>
<td>3.1 SURFACE WATER HYDROLOGY</td>
<td>11</td>
</tr>
<tr>
<td>3.2 GROUNDWATER HYDROLOGY</td>
<td>14</td>
</tr>
<tr>
<td>4 MANAGEMENT OF THE QUALITY AND QUANTITY OF SURFACE AND GROUNDWATER WITHIN AND AROUND THE CGO</td>
<td>17</td>
</tr>
<tr>
<td>4.1 CONSTRUCTION PHASE</td>
<td>21</td>
</tr>
<tr>
<td>4.1.1 Up-catchment Diversion System</td>
<td>22</td>
</tr>
<tr>
<td>4.1.2 Lake Isolation System</td>
<td>24</td>
</tr>
<tr>
<td>4.1.3 Internal Catchment Drainage System</td>
<td>27</td>
</tr>
<tr>
<td>4.1.4 Integrated Erosion, Sediment and Salinity Control System</td>
<td>28</td>
</tr>
<tr>
<td>4.1.5 Pit Dewatering System</td>
<td>29</td>
</tr>
<tr>
<td>4.1.6 Bland Creek Palaeochannel Borefield and Water Supply Pipeline</td>
<td>30</td>
</tr>
<tr>
<td>4.1.7 ML 1535 Boundary Fence and Security Fence</td>
<td>30</td>
</tr>
<tr>
<td>4.2 OPERATIONS PHASE</td>
<td>30</td>
</tr>
<tr>
<td>4.2.1 Water Supply</td>
<td>34</td>
</tr>
<tr>
<td>4.2.2 Pit Dewatering</td>
<td>48</td>
</tr>
<tr>
<td>4.2.3 Integrated Erosion, Sediment and Salinity Control System</td>
<td>49</td>
</tr>
<tr>
<td>4.2.4 Waste Emplacements</td>
<td>50</td>
</tr>
<tr>
<td>4.2.5 Process Plant Area</td>
<td>52</td>
</tr>
<tr>
<td>4.2.6 Cyanide Management</td>
<td>52</td>
</tr>
<tr>
<td>4.2.7 Tailings Management</td>
<td>52</td>
</tr>
<tr>
<td>4.2.8 Sewage and Associated Waste Management</td>
<td>54</td>
</tr>
<tr>
<td>4.3 MONITORING PROGRAMMES AS PROVIDED BY CONDITION 4.5</td>
<td>54</td>
</tr>
<tr>
<td>4.3.1 Meteorological Monitoring</td>
<td>56</td>
</tr>
<tr>
<td>4.3.2 Surface Water Monitoring</td>
<td>57</td>
</tr>
<tr>
<td>4.3.3 Groundwater Monitoring</td>
<td>62</td>
</tr>
<tr>
<td>4.3.4 Biological Monitoring</td>
<td>64</td>
</tr>
<tr>
<td>4.3.5 Cyanide Monitoring</td>
<td>66</td>
</tr>
<tr>
<td>4.3.6 Detection of Movement of Water Management Structures</td>
<td>66</td>
</tr>
</tbody>
</table>
MEASURES TO PREVENT THE QUALITY OF WATER IN LAKE COWAL OR ANY SURFACE WATERS BEING DEGRADED

5.1 PRE-CONSTRUCTION ANZECC WATER QUALITY CLASSIFICATION

5.2 MEASURES TO PREVENT THE DEGRADATION OF THE QUALITY OF WATER IN LAKE COWAL

5.2.1 Construction

5.2.2 Operation

5.3 MEASURES TO PREVENT THE DEGRADATION OF THE QUALITY OF WATER IN ANY SURFACE WATERS

POSSIBLE ADVERSE EFFECTS ON WATER SUPPLY SOURCES

6.1 SURFACE WATER

6.2 GROUNDWATER

6.2.1 Surrounding Landholders

6.2.2 Landholders near the Bland Creek Palaeochannel Borefield and Eastern Saline Borefield

CHANGES IN FLOOD REGIME ON PRODUCTIVE AGRICULTURAL LAND IN NERANG COWAL

7.1 INUNDATION OF PRODUCTIVE LAND IN NERANG COWAL CAUSED BY THE CHANGED FLOOD REGIME

7.2 AFFECTED LANDHOLDERS

7.3 APPROPRIATE COMPENSATION MEASURES

7.3.1 Event Based Investigation and Compensation

7.3.2 Long-term Compensation

CONSTRUCTION AND OPERATION OF WATER STORAGES D1 AND D4 AS FIRST FLUSH SYSTEMS

MEASURES TO MANAGE AND DISPOSE OF WATERS CAPTURED BEHIND THE TEMPORARY PERIMETER BUND DURING CONSTRUCTION AND OPERATION

INTEGRATION OF THE LATEST VERSIONS OF THE JEMALONG LAND AND WATER MANAGEMENT PLAN AND THE LAKE COWAL LAND AND WATER MANAGEMENT PLAN

10.1 JEMALONG LAND AND WATER MANAGEMENT PLAN

10.2 LAKE COWAL LAND AND WATER MANAGEMENT PLAN

STRATEGY FOR THE DECOMMISSIONING OF WATER MANAGEMENT STRUCTURES AND LONG-TERM MANAGEMENT OF FINAL VOID AND LAKE PROTECTION BUND

11.1 STRATEGY FOR THE DECOMMISSIONING OF WATER MANAGEMENT STRUCTURES

11.1.1 Water Management Structures

11.1.2 Mine Water Supply Bores and Pipeline

11.2 LONG-TERM MANAGEMENT OF THE FINAL VOID AND LAKE PROTECTION BUND

11.2.1 Final Void

11.2.2 Lake Protection Bund

REPORTING PROGRAMME

12.1 SITE WATER DATABASE

12.2 MONITORING REPORTS
LIST OF TABLES

Table 1 Development Consent Conditions Relevant to this WMP
Table 2 Rainfall Data Summary
Table 3 Potential Sources of Surface Water Contamination
Table 4 Water Management System – Hydrological Design Criteria
Table 5 Groundwater Licensing Requirement Summary
Table 6 Summary of Contained Water Storages
Table 7 Simulated Water Balance for the Life of the Approved CGO
Table 8 Meteorological Monitoring Parameters
Table 9 Bureau of Meteorology Station Locations
Table 10 Surface Water Monitoring Programme
Table 11 Groundwater Monitoring Programme
Table 12 Summary of Lake Cowal Baseline Water Quality

LIST OF FIGURES

Figure 1 CGO Locality
Figure 2 Current General Arrangement of Approved CGO
Figure 3 Lachlan River Floodways
Figure 4 Conceptual Hydrogeological Cross Section across ML 1535
Figure 5 Borefields and Pipeline Locations
Figure 6 Conceptual Section through the Lake Isolation System
Figure 7a Water Management Plan Year 14 (2018)
Figure 7b Water Management Plan Year 18 (2022)
Figure 8 CGO Water Management System
Figure 9 Location of Production Bores and Regional Groundwater Bores
Figure 10 Eastern Pump Station
Figure 11 Conceptual Embankment Section of Northern Waste Rock Emplacement
Figure 12 ML 1535 Surface Water and Groundwater Monitoring Locations
Figure 13 Regional Surface Water and Groundwater Monitoring Locations
Figure 14 Predicted Maximum Watertable Drawdown Contours at the end of the Approved CGO Mine Life
Figure 15 Predicted Watertable Drawdown with the Bland Creek Palaeochannel Borefield pumping at 7.2 ML/day during the Approved CGO Mine Life

LIST OF APPENDICES

Appendix A Groundwater Monitoring Programme Bore Licence and Water Access Licence Numbers
Appendix B Chapter 3 of Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ, 2000)

LIST OF ATTACHMENTS

Attachment 1 CGO Environmental Management System
1 INTRODUCTION

The Cowal Gold Operations (CGO) is located approximately 38 kilometres (km) north of West Wyalong in New South Wales (NSW) (Figure 1). Evolution Mining (Cowal) Pty Limited (Evolution) is the owner and operator of the CGO. Evolution acquired the CGO from Barrick (Cowal) Pty Ltd (Barrick) in July 2015.

Development Consent for the CGO (including the Bland Creek Palaeochannel Borefield water supply pipeline) was granted by the NSW Minister for Urban Affairs and Planning under Part 4 of the NSW Environmental Planning and Assessment Act, 1979 (EP&A Act) on 26 February 1999 (DA 14/98). Development Consent (DA 2011/64) for the operation of the Eastern Saline Borefield was granted by the Forbes Shire Council on 20 December 2010.

Evolution was granted approval by the NSW Minister for Planning to modify the Development Consent (DA 14/98) for the Cowal Gold Mine Extension Modification under Section 75W of the EP&A Act on 22 July 2014. The Cowal Gold Mine Extension Modification involves the continuation and extension of open pit mining and processing operations at the CGO for an additional operational life of approximately 5 years (i.e. to 2024).

On 7 February 2017, Development Consent (DA 14/98) was again modified by the NSW Minister for Planning under Section 75W of the EP&A Act to allow continued operations at the existing CGO for a further 8 years (i.e. to 2032) to allow an additional 1.7 million ounces of gold production. The current general arrangement of the approved CGO is provided in Figure 2.

A copy of the Development Consent (DA 14/98) for the CGO (as modified on 7 February 2017) is available on Evolution's website (www.evolutionmining.com.au).

The original Site Water Management Plan (SWMP) for the CGO was prepared in accordance with the requirements of the Development Consent (DA 14/98) in consultation with the former NSW Department of Land and Water Conservation (DLWC) and the NSW Environment Protection Authority (EPA) and was approved by the then NSW Department of Infrastructure Planning and Natural Resources (DIPNR) in October 2003. Several revisions of the SWMP have been prepared since 2003 as outlined in the Revision Status Register.

This Water Management Plan (WMP) has been prepared in accordance with the revised requirements of Development Consent Condition 4.4(a) (and other relevant Development Consent Conditions) (as modified on 7 February 2017) and supersedes the former SWMP. As required by Development Consent Condition 4.4(a)(i), the Department of Primary Industries – Water (DPI – Water) and Environmental Protection Authority (EPA) have been consulted during the preparation of this Plan. In correspondence dated 22 August 2017, the EPA advised that following review of the revised WMP they had no objections to the proposed revisions. The requirements of Development Consent Condition 4.4(a) and where they are addressed within this WMP are outlined in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Development Consent Conditions Relevant to this WMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Consent Condition</td>
<td>Section</td>
</tr>
<tr>
<td>4.4 Water Management</td>
<td></td>
</tr>
<tr>
<td>(a) The Applicant shall prepare a Water Management Plan for the development to the satisfaction of the Secretary. This plan must:</td>
<td>This WMP</td>
</tr>
<tr>
<td>(i) be prepared in consultation with DPI (Water) and EPA;</td>
<td>Section 1</td>
</tr>
</tbody>
</table>
Table 1 (Continued)
Development Consent Conditions Relevant to this WMP

<table>
<thead>
<tr>
<th>Development Consent Condition</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii) include, but not be limited to, the following matters;</td>
<td></td>
</tr>
<tr>
<td>• management of the quality and quantity of surface and ground water within and around the mine site, including water in the up catchment diversion system, internal catchment drainage system, dewatering bores, Bland Creek Palaeochannel borefield and water supply pipeline from the borefield, which shall include preparation of monitoring programs (see below);</td>
<td>Section 4</td>
</tr>
<tr>
<td>• measures to prevent the quality of water in Lake Cowal or any surface waters being degraded below the relevant ANZECC water quality classification prior to construction due to the construction and/or operation of the mine;</td>
<td>Section 5</td>
</tr>
<tr>
<td>• identification of any possible adverse effects on water supply sources of surrounding land holders, and land holders near the Bland Creek Palaeochannel Borefield as a result of the mining operations, and implementation of mitigation measures as necessary;</td>
<td>Section 6</td>
</tr>
<tr>
<td>• identification of changes in flood regime on productive agricultural land in Nerang Cowal as a result of the mine perimeter bund intruding into Lake Cowal, and provision of appropriate compensation measures for affected landholders based on inundation of productive land caused by the changed flood regime;</td>
<td>Section 7</td>
</tr>
<tr>
<td>• construction and operation of water storages D1 and D4 as first flush systems with initial captured run-off waters from the outer batters of northern and southern emplacement dumps reporting to water storage D6;</td>
<td>Section 8</td>
</tr>
<tr>
<td>• measures to manage and dispose of water that may be captured behind the temporary perimeter bund during construction of that bund;</td>
<td>Section 9</td>
</tr>
<tr>
<td>• integration of the latest versions of the Jemalong Land and Water Management Plan and the Lake Cowal Land and Water Management Plan;</td>
<td>Section 10</td>
</tr>
<tr>
<td>• measures to evaluate water quality data obtained from monitoring under this consent against records of baseline monitoring undertaken prior to the consent; and</td>
<td>Sections 4.3.2, 4.3.3 and 4.3.4</td>
</tr>
<tr>
<td>• a program for reporting on the effectiveness of the water management systems and performance against objectives contained in the approved site water management plan, and EIS.</td>
<td>Section 12</td>
</tr>
</tbody>
</table>
In addition to the above, the following Development Consent Conditions are also relevant to this WMP:

- **Development Consent Condition 4.4(b) requires:**

 The Applicant shall develop a strategy for the decommissioning of water management structures, including water storages both in and around the mine site, the water pipeline and borefield infrastructure associated with the development, and long term management of final void and Lake protection bund. The strategy shall include, but not be limited to, long term monitoring of the water quality in the final void and stability of Lake protection bund and void walls, and options for alternate uses of the water pipeline. The strategy for the final void shall be submitted by Year 7 of mining operations or five years before mine closure, whichever is the sooner, in consultation with DPI (Water), EPA, DRE, and CEMCC, and to the satisfaction of the Secretary.

 This condition is addressed in Section 11.

- **Development Consent Condition 4.4(c)(i) requires:**

 The Applicant shall:

 (i) construct the Lake protection bund and site water and tailings storages to the requirements of DPI (Water), EPA and DSC.

 This condition is addressed in Section 4.1.

- **Development Consent Condition 4.5 (Water Monitoring) provides:**

 a) The Applicant shall construct and locate:

 (i) surface water monitoring positions in consultation with DPI (Water) and EPA, and to the satisfaction of the Secretary, at least three months prior to the commencement of construction works unless otherwise directed by the Secretary; and

 (ii) groundwater monitoring positions in consultation with DPI (Water) and EPA, and to the satisfaction of the Secretary at least six months prior to the commencement of construction works unless otherwise directed by the Secretary.

 b) The Applicant shall prepare and implement a detailed monitoring program for the development to the satisfaction of the Secretary. This plan must be prepared in consultation with DPI (Water), EPA, DPI(Fisheries), and be directed towards monitoring the potential water impacts of the mine, including water in the up catchment diversion system, internal catchment drainage system, dewatering bores, all borefields associated with the development and water supply pipeline, pit/void, Lake Cowal, and any other waters in and around the mine site for all stages of the development.

 The monitoring program will include the development of adequate chemical and biological monitoring in the waters of Lake Cowal, when water is present, by suitably qualified and experienced staff or consultants to the satisfaction of the DPI (Water) and EPA, and in the case of biological monitoring DPI (Fisheries), DPI (Water) and EPA must be satisfied as to sampling design, including sample locations, sample frequency, sample handling, transport and analysis, sampling parameters and reporting of analysis results.

 The results and interpretation of surface and ground water monitoring (including biological monitoring) are to be published on the Applicant’s website for the development on a regular basis, or as directed by the Secretary.

 c) The Applicant shall prepare and implement, a monitoring program for the detection of any movement of the Lake protection bund, water storage and tailings structures and pit/void walls during the life of the mine, with particular emphasis on monitoring after any seismic events prior to commencement of construction works, in consultation with DPI (Water) and DRE and to the satisfaction of the Secretary.

 This condition is addressed in Section 4.3.
• Development Consent Condition 4.1(a) provides:

 The Applicant shall ensure that it has sufficient water for all stages of the development, and if necessary, adjust the scale of operations on site to match its available water supply.

 Note: Under the Water Act 1912 and/or the Water Management Act 2000, the Applicant is required to obtain all necessary water licences for the development.

This condition is addressed in Section 4.2.1 and Appendix A.

• Development Consent Condition 4.1(b) provides:

 The maximum daily extraction of water from the Bland Creek Palaeochannel shall not exceed 15ML/day, or 3650ML/year.

This condition is addressed in Section 4.2.1.

• Development Consent Condition 4.2(a) provides:

 All pipeline and borefield infrastructure for the development shall be:

 (i) constructed in consultation with DPI(Fisheries), and in accordance with the requirements of NOW; and

 (ii) laid in such a way so as not to impede the passage of fish or other animals, or interfere with flood behaviour or the passage of boats and vehicles;

 (iii) equipped with an automatic shut down device so water pumping is immediately stopped in the event of any pipe rupture. The water supply shall not be restarted until the rupture is located and repaired.

This condition is addressed in Sections 4.1.6 and 4.2.1.

• Development Consent Condition 4.3 provides:

 There shall be no disposal of water from the internal catchment drainage system on site to Lake Cowal under any circumstances.

This condition is addressed in Section 4.1.3.

• Development Consent Condition 4.6 provides:

 The Applicant shall as a landowner have on-going regard for the provisions of the latest versions of the Jemalong Land and Water Management Plan, Lake Cowal Land and Water Management Plan, Mid-Lachlan Regional Vegetation Management Plan, and any future catchment/land and water management plans that may become relevant to the area.

This condition is addressed in Section 10.

• Development Consent Condition 5.6 provides:

 The Applicant shall install the site sewage treatment facility, and dispose of treated sewage and sullage to the satisfaction of BSC and EPA, and in accordance with the requirements of the Department of Health.

This condition is addressed in Section 4.2.8.
1.1 OBJECTIVES AND SCOPE

1.1.1 Objectives

This WMP establishes the following objectives for the CGO site water management system (consistent with the Cowal Gold Project Environmental Impact Statement [the EIS] [North Limited, 1998a]):

- prevent the quality of any surface water (including waters within Lake Cowal) and groundwater being degraded, through the containment of all potentially contaminated water (contained water) generated within the CGO area and diversion of all other water around the perimeter of the site;
- manage the quantity of surface water and groundwater within and around the mine site through the appropriate design (i.e. sizing), construction and operation of water management structures; and
- establish a monitoring, review and reporting programme that facilitates the identification of potential surface water and groundwater impacts and the development of ameliorative measures as necessary, including provision of appropriate compensation measures for landholders affected by changes to the flood regime of Nerang Cowal.

A programme for reporting on the effectiveness of water management systems and their performance against these objectives is presented in Section 12.1.1.

1.1.2 Scope

In achieving the above objectives, this WMP has been prepared to fulfil the requirements of Development Consent Condition 4.4(a) (as presented in Section 1) through the:

- development of measures for the management and mitigation of potential water quality and quantity (surface and groundwater) impacts, including the development of a site water management system designed to contain all potentially contaminated water generated within the CGO area while directing all other water around the perimeter of the site;
- development of measures to prevent the quality of water in Lake Cowal or any surface waters being degraded below the relevant Australian and New Zealand Environmental and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) water quality classification;
- identification of possible adverse effects on water supply sources of surrounding landholders and landholders near the Bland Creek Palaeochannel borefield, and implementation of mitigation measures as necessary;
- identification of changes in flood regime on productive agricultural land in Nerang Cowal as a result of the mine perimeter bund intruding into Lake Cowal, and provision of appropriate compensation measures for affected landholders based on inundation of productive land caused by the changes in flood regime;
- development of water storages D1 and D4 to operate as first flush systems with initial captured run-off waters from the outer batters of the northern and southern waste emplacements reporting to water storage D6;
- development of measures to manage and dispose of water that may be captured behind the temporary perimeter bund during construction of that bund;
- integration of the Lake Cowal Land and Water Management Plan and Jemalong Land and Water Management Plan (JLWMP);
- development of measures to evaluate water quality data obtained from monitoring against records of baseline monitoring undertaken prior to development consent; and
• development of a programme for reporting on the effectiveness of the water management systems and performance against objectives contained in this WMP, the EIS and subsequent modification documentation.

This WMP has been revised to reflect the modifications to the Development Consent (DA 14/98) under Section 75W of the EP&A Act granted by the NSW Minister for Planning on 7 February 2017, and to reflect the approved CGO.

This WMP forms a part of the CGO’s Environmental Management Strategy prepared in accordance with Development Consent Condition 9.1(a). A plan showing the CGO’s environmental management system including the relationship between the environmental management plans and monitoring programmes required under the Development Consent is provided in Attachment 1.

1.2 STRUCTURE OF THIS WMP

This WMP is structured as follows:

Section 1: Provides an introduction to the CGO and this WMP and includes the Development Consent Conditions relevant to this WMP. The section also outlines the objectives and scope of the WMP.

Section 2: Defines relevant approval and statutory requirements that apply to this WMP and to water management for the CGO.

Section 3: Outlines the local hydrological regime.

Section 4: Presents site water management measures to be implemented during the construction and operation phases of the CGO and outlines the monitoring programmes required by Development Consent Condition 4.5.

Section 5: Describes measures to be implemented to prevent the degradation of water quality in local watercourses.

Section 6: Identifies possible adverse effects on water supply sources and presents mitigation measures.

Section 7: Addresses potential changes to the flood regime on agricultural land at Nerang Cowal and the provision of appropriate compensation measures for affected landholders.

Section 8: Describes the construction and operation of water storages D1 and D4 as first flush systems.

Section 9: Outlines the management and disposal of water collected behind the temporary perimeter bund during construction and operation.

Section 10: Discusses the integration of the latest versions of the JLWMP and the Lake Cowal Land and Water Management Plan.

Section 11: Outlines the strategy for the decommissioning of water management structures and the long-term management of the final void and lake protection bund.

Section 12: Discusses the reporting and review requirements for this WMP.

Section 13: Describes community consultation obligations and independent review procedures.

Section 14: Lists the references cited in this WMP.
2 LEGISLATIVE AND APPROVAL REGIME

2.1 DEVELOPMENT CONSENT CONDITIONS

The Development Consent Conditions relevant to this WMP are detailed in Section 1.

2.2 CONDITIONS OF MINING AUTHORITY MINING LEASE 1535

The Conditions of Authority of the Mining Lease (ML) 1535 regulated by the Division of Resources and Geoscience (DRG) within the NSW Department of Planning and Environment (DP&E) (formerly Division of Resources and Energy within the Department of Trade and Investment, Regional Infrastructure and Services [DTIRIS-DRE]) includes requirements that relate to water pollution prevention. The relevant Conditions of Authority include:

Rehabilitation

12. (a) Land disturbed must be rehabilitated to a stable and permanent form suitable for a subsequent land use acceptable to the Director-General and in accordance with the Mining Operations Plan so that:

- there is no adverse environmental effect outside the disturbed area and that the land is properly drained and protected from soil erosion.
- the state of the land is compatible with the surrounding land and land use requirements.
- the landforms, soils, hydrology and flora require no greater maintenance than that in the surrounding land.
- in cases where revegetation is required and native vegetation has been removed or damaged, the original species must be re-established with close reference to the flora survey included in the Mining Operations Plan. If the original vegetation was not native, any re-established vegetation must be appropriate to the area and at an acceptable density.
- the land does not pose a threat to public safety.

(b) Any topsoil that is removed must be stored and maintained in a manner acceptable to the Director-General.

This condition is addressed in Sections 4 and 5.

Prevention of Soil Erosion and Pollution

14. Operations must be carried out in a manner that does not cause or aggravate air pollution, water pollution (including sedimentation) or soil contamination or erosion, unless otherwise authorised by a relevant approval, and in accordance with an accepted Mining Operations Plan. For the purpose of this condition, water shall be taken to include any watercourse, waterbody or groundwaters. The lease holder must observe and perform any instructions given by the Director-General in this regard.

This condition is addressed in Sections 4 and 5.

The Conditions of Authority for ML 1535 also include environmental performance reporting requirements associated with the Annual Environmental Management Report (AEMR) and proposed mine development reporting requirements associated with the Mining Operations Plan (MOP).

Contemporary reporting requirements for the Annual Review (formerly the AEMR) are described in Section 12.3. The Cowal Gold Operations Mining Operations Plan (1 September 2016 – 31 August 2018) was approved by the DRG on 31 May 2017.
2.3 ENVIRONMENT PROTECTION LICENCE CONDITIONS

The CGO’s Environment Protection Licence No. 11912 (EPL) includes requirements relevant to surface water and groundwater monitoring locations and parameters, cyanide monitoring and cyanide concentration limits, incident notification and reporting. The EPL will be revised as necessary to reflect this WMP. The EPL notification and reporting requirements relevant to this WMP are outlined in Section 12.4.

2.4 RELEVANT LEGISLATION

Evolution will operate the CGO consistent with Development Consent (DA 14/98) and any other legislation that is applicable to an approved project under section 75W of the EP&A Act.

In addition to the EP&A Act, the following NSW Acts are relevant to this WMP:

- Water Management Act, 2000;
- Water Act, 1912; and

Relevant licences or approvals required under these Acts will be obtained as required for the modified approved CGO. A summary of the groundwater monitoring programme bore licence and Water Access Licence (WAL) numbers is provided in Appendix A.

Water Sharing Plans

The Water Sharing Plans relevant to the CGO include the Water Sharing Plan for the Lachlan Unregulated and Alluvial Water Sources 2012 and the Water Sharing Plan for the NSW Murray Darling Basin Fractured Rock Groundwater Sources 2011. A summary of the relevant licences associated with these Water Sharing Plans is provided in Section 4.2.1.
3 OVERVIEW OF SITE HYDROLOGY

The following overviews of surface water and groundwater hydrology for the CGO area are sourced from the Cowal Gold Mine Extension Modification Environmental Assessment (Barrick, 2013) which include relevant information from the Cowal Gold Mine Extension Modification Hydrological Assessment (Gilbert & Associates, 2013) and the Final Hydrogeological Assessment – Cowal Gold Mine Extension Modification (Coffey Geotechnics, 2013).

3.1 SURFACE WATER HYDROLOGY

The CGO is located on the western side of Lake Cowal (Figure 1) and extends into the natural extent of Lake Cowal. Lake Cowal is an ephemeral, fresh water lake that forms part of the Wilbertroy-Cowal Wetlands which are located on the Jemalong Plain. Lake Cowal is in the lower reaches of the Bland Creek catchment. It also receives periodic inflows from the Lachlan River during periods of high flow when flood waters enter Lake Cowal via two main breakout channels from the north-east (Figure 3). Breakout from the Lachlan River to Lake Cowal occurred in late 2010, in the first half of 2012 and October 2016, but had not occurred prior to this since 1998.

Lake Cowal is a large oval shaped lake which when full occupies an area of some 105 square kilometres (km²), holds some 150 gigalitres of water and has a maximum depth of approximately 4 metres (m) when full. It overflows to Nerang Cowal, a smaller lake to the north (Figure 3). Overflows from Lake Cowal to Nerang Cowal occurred in early 2012 and again in October 2016. When flows are sufficient, the lakes ultimately overflow and drain into the Lachlan River via Bogandillon Creek (Figure 3). The Lachlan River is the major regional surface drainage, forming part of the Murray-Darling Basin. Flows in the Lachlan River are regulated by releases from Wyangala Dam.

Lake water level rises in recent years have been caused by local rainfall (e.g. in March 2011), runoff inflows from the Bland Creek catchment and by breakout flows from the Lachlan River (e.g. in February 2012 and October 2016).

The area surrounding the CGO site is drained by ephemeral drainage lines which flow to Lake Cowal. Bland Creek and all other tributaries of Lake Cowal are also ephemeral. Flow records from a gauging station² on Bland Creek indicate that runoff is low, averaging about 5 percent (%) of rainfall.

Meteorology

The region experiences a semi-arid climate which is dominated by cool, wetter conditions in winter and hot and relatively dry conditions in summer. Table 2 summarises regional monthly and annual rainfall totals from the Bureau of Meteorology (BoM) stations nearest to the CGO (Wyalong, Ungarie and Burcher Post Offices [PO]), as well as rainfall recorded at the CGO since 2002.

¹ Inflows from the Lachlan River occur when flows at Jemalong Weir exceed 15,000 to 20,000 megalitres per day (ML/day) – North Limited (1998a).
² GS 412171 (Bland Creek at Marsden), which operated from 1998 to 2004.
FIGURE 3
Lachlan River Floodways

LEGEND
- Flood flow direction
- Levee banks (present in May 1992)
- Jemalong and Wyldes Plains Irrigation District: Irrigation channels
- Jemalong and Wyldes Plains Irrigation District
- Mining Lease Boundary

Source: Dept. Water Resources (1992)
Table 2
Rainfall Data Summary

<table>
<thead>
<tr>
<th></th>
<th>Wyalong PO</th>
<th>Ungarie PO**</th>
<th>Burcher PO (050010)</th>
<th>CGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Total (mm)</td>
<td>Mean No. Raindays</td>
<td>Mean Total (mm)</td>
<td>Mean No. Raindays</td>
<td>Mean Total (mm)</td>
</tr>
<tr>
<td>Jan</td>
<td>41.9</td>
<td>4.8</td>
<td>42.1</td>
<td>3.7</td>
</tr>
<tr>
<td>Feb</td>
<td>38.7</td>
<td>4.6</td>
<td>39.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Mar</td>
<td>36.7</td>
<td>4.7</td>
<td>38.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Apr</td>
<td>34.3</td>
<td>4.8</td>
<td>32.9</td>
<td>3.8</td>
</tr>
<tr>
<td>May</td>
<td>39.1</td>
<td>6.6</td>
<td>38.3</td>
<td>5.5</td>
</tr>
<tr>
<td>Jun</td>
<td>44.1</td>
<td>8.8</td>
<td>43.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Jul</td>
<td>42.9</td>
<td>9.8</td>
<td>38.5</td>
<td>7.1</td>
</tr>
<tr>
<td>Aug</td>
<td>38.8</td>
<td>9.0</td>
<td>35.6</td>
<td>6.9</td>
</tr>
<tr>
<td>Sep</td>
<td>35.3</td>
<td>7.3</td>
<td>33.3</td>
<td>5.7</td>
</tr>
<tr>
<td>Oct</td>
<td>45.1</td>
<td>6.9</td>
<td>40.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Nov</td>
<td>36.3</td>
<td>5.5</td>
<td>36.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Dec</td>
<td>44.5</td>
<td>5.5</td>
<td>43.5</td>
<td>4.3</td>
</tr>
<tr>
<td>Annual</td>
<td>477.7</td>
<td>78.4</td>
<td>463.1</td>
<td>60.9</td>
</tr>
</tbody>
</table>

Source: (Hydro Engineering & Consulting, 2016)
* BoM Station Number.
** Data contains numerous gaps in recent years and early in the 20th century.
† Manual gauge to December 2006, automatic weather station thereafter.
mm = millimetres.

Note: Statistically, the sum of monthly means does not necessarily equal the annual mean.

Long-term regional rainfall averages approximately 470 mm per annum. Average annual rainfall recorded at the CGO from 2002 to mid 2016 averages 430 mm, which compares with an annual average of 438 mm recorded at Wyalong PO and 481 mm at Burcher PO for the same period.

Lake Cowal Water Quality

Baseline water quality in Lake Cowal was typically slightly to moderately alkaline (pH 8.27 to 8.67) with low to moderate suspended solids concentrations (total suspended solids concentrations of 24 to 222 milligrams per Litre [mg/L]) (North Limited, 1998a).

Electrical conductivity (EC) was also low, varying between 222 and 1,557 microSiemens per centimetre (µS/cm) (North Limited, 1998a) and appeared to be inversely related to lake volume (i.e. solute concentrations increased as lake volumes decreased).

Baseline cadmium, arsenic, lead, mercury and zinc levels were low, and mostly below relevant detection limits, however, copper concentrations were found to be higher than the ANZECC and ARMCANZ (2000) limit for the protection of aquatic ecosystems (Hydro Engineering & Consulting, 2016).
Review of water quality monitoring results to date indicates the following (Hydro Engineering & Consulting, 2016):

- the range of pH was high relative to ANZECC/ARMCANZ (2000) default triggers and baseline ranges, however has been similarly elevated at sites near and distant to the CGO;
- average copper, lead and zinc concentrations were high relative to both ANZECC/ARMCANZ (2000) default triggers and baseline ranges, however has been similarly elevated at sites on the opposite (eastern) side of Lake Cowal;
- average turbidity was significantly higher than the ANZECC/ARMCANZ (2000) default trigger value and higher than baseline levels, however turbidity levels have occurred uniformly at sites close to and distant from the CGO; and
- total phosphorous concentrations were significantly higher than the ANZECC/ARMCANZ (2000) default trigger value for fresh water lakes however concentrations have been similar at sites both close to the CGO and on the other side of Lake Cowal (it is also noted, measured total phosphorus is less than the baseline average).

Given that CGO water management infrastructure fully contains surface water runoff from the CGO, the only plausible links between mining activity at the CGO and lake water quality would be overflow from dams D1 and/or D4 (which has not occurred to date), the deposition of mine generated dust onto the lake or runoff from the outside batters and inundated parts of the lake isolation bund (Hydro Engineering & Consulting, 2016).

However, the data supports that there is no evidence that the existing CGO has resulted in changes to water quality in Lake Cowal (Hydro Engineering & Consulting, 2016).

3.2 GROUNDWATER HYDROLOGY

Existing Groundwater Regime

A conceptual groundwater model of the existing groundwater regime was developed by Coffey Geotechnics (2013) based on review of available hydrogeological data to support the two groundwater systems identified in the relevant Water Sharing Plans, which are as follows:

- alluvial groundwater system; and
- fractured rock groundwater system.

Alluvial Groundwater System

Alluvial groundwater resources within the region are generally associated with two geological formations (Coffey Geotechnics, 2013):

- the Cowra Formation, which comprises aquifers of isolated sand and gravel lenses in predominantly silt and clay alluvial deposits, with perched groundwater of generally higher salinity; and
- the Lachlan Formation (Bland Creek Palaeochannel), which comprises an aquifer of quartz gravel with groundwater of generally low salinity.
The CGO open pit intersects the Cowra Formation, but does not intersect the Lachlan Formation (Figure 4). The saline groundwater supply bores within the ML 1535 extract water from the Cowra Formation. The Bland Creek Palaeochannel Borefield extracts water from the Lachlan Formation, while the eastern saline borefield extracts water from the Cowra Formation.

Fractured Rock Groundwater System

The fractured rock groundwater system underlies the alluvial groundwater system, and consists of the following geological formations:

- the Ordovician aged Lake Cowal Volcanics Complex, which comprise massive and stratified non-welded pyroclastic debris, overlying a partly brecciated lava sequence, overlying volcanic conglomerate interbedded with siltstone and mudstone; and
- overlying Siluro-Devonian Group and Ooth Formation, which comprise shallow to deep marine sedimentary units.

The existing CGO open pit intersects the Lake Cowal Volcanics Complex.

Groundwater Quality

Mine Site (ML 1535)

Assessment of baseline groundwater salinity levels undertaken for the EIS by Coffey Partners International (1997) reported that:

- The alluvial groundwater system had very high salinity in the range of 19,000 to 72,000 µS/cm within the open pit extent and 6,000 to 44,400 µS/cm beneath the tailings storage facilities area.
- The fractured rock groundwater system also had very high salinity in the range of 50,900 to 63,700 µS/cm.

Monitoring data indicates that, while open pit dewatering is causing a localised reduction in groundwater levels, no changes in groundwater chemistry appear to be associated with this drawdown (Coffey Geotechnics, 2016).

Bland Creek Palaeochannel

Groundwater quality records from monitoring bores in the Bland Creek Palaeochannel Borefield indicate decreasing salinity with depth (Coffey Geotechnics, 2016). Salinity levels in the Cowra Formation are approximately 31,000 µS/cm (Upper Cowra) and 13,800 µS/cm (Lower Cowra), and approximately 1,900 µS/cm in the Lachlan Formation (Coffey Geotechnics, 2016).

EC records from groundwater monitoring bores in the Bland Creek Palaeochannel indicate that salinity levels have remained reasonably constant within the three alluvial sequences since monitoring commenced in 2004. While fluctuations at BLPR2 have been recorded, salinity levels fell substantially in late 2013 before indicating an overall upward trend since late 2014 (Coffey Geotechnics, 2016).
4 MANAGEMENT OF THE QUALITY AND QUANTITY OF SURFACE AND GROUNDWATER WITHIN AND AROUND THE CGO

As required by Development Consent Condition 4.4(a)(ii) this WMP addresses the management of the quality and quantity of surface and groundwater within and around the CGO.

The CGO water management system has been designed to contain all potentially contaminated water (contained water) generated within the CGO area while diverting all other water around the perimeter of the site. The water management system includes both permanent features that would continue to operate post-closure (e.g. diversions of surface water around the site, creation of new catchment divides and isolation of the lake from the open pit), and temporary structures (servicing the life of mine requirements only). The water management system will be progressively developed during the construction and operation of the mine as diversion and containment requirements change (North Limited, 1998a).

The quantity of surface water within and around the CGO will be managed through the construction and maintenance of a number of water management structures. The Up-catchment Diversion System (Section 4.1.1), lake isolation system (Section 4.1.2) and Internal Catchment Drainage System (Section 4.1.3) are designed to minimise the volume of surface water within the mine site through the isolation of the mine site from Lake Cowal and the catchment above the Up-catchment Diversion System. The quantity of surface water within and around the mine site will be managed through the sizing of these structures according to the design criteria presented in the following sections.

Surface water runoff from mine landforms and disturbed areas could potentially contain sediment, salinity, oil and grease and process reagents. Potential sources of surface water quality contamination are summarised in Table 3.

<table>
<thead>
<tr>
<th>Source of Contamination</th>
<th>Type of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste rock emplacements</td>
<td>Runoff and/or seepage containing sediment, increased salinity.</td>
</tr>
<tr>
<td>Run-of-mine (ROM) and low grade ore stockpiles and soil stockpiles</td>
<td>Runoff and/or seepage containing sediment, increased salinity.</td>
</tr>
<tr>
<td>Tailings storage/pipeline</td>
<td>Runoff and/or seepage containing dissolved salts, cyanide, other reagents and potential heavy metals.</td>
</tr>
<tr>
<td>Pit dewatering/pipeline</td>
<td>High salinity groundwater, direct rainfall.</td>
</tr>
<tr>
<td>Process water/pipeline</td>
<td>High salinity (pit dewatering make-up water) and dissolved salts.</td>
</tr>
<tr>
<td>Bore 4 pump station</td>
<td>Runoff containing fuel, oil, hydraulic fluid and sediments.</td>
</tr>
<tr>
<td>Saline groundwater supply borefield/pipeline</td>
<td>High salinity groundwater.</td>
</tr>
<tr>
<td>Process plant</td>
<td>Cyanide, process reagents, fuel, oil, other chemicals.</td>
</tr>
<tr>
<td>Sewage treatment area</td>
<td>Untreated or partially treated sewage containing bacteria, organic matter and nutrients.</td>
</tr>
</tbody>
</table>

As part of the EIS (North Limited, 1998a) and relevant subsequent modifications, detailed water studies have been undertaken in order to design a comprehensive water management system to reduce any potential surface water and groundwater impacts. Water management strategies have been developed in conjunction with the mine waste and soil management strategies to mitigate the potential impacts described above.
Management strategies for the construction and operation phases involve the following principles (North Limited, 1998a):

1. **Minimising Disturbance Areas**

 The general arrangement design has been developed to minimise the potential environmental impacts of the CGO. Specific design criteria used included the creation of a compact site layout that minimises the overall disturbance area as well as ore and waste haulage distances.

2. **Containment of Potentially Contaminated Water**

 The Up-catchment Diversion System and Internal Catchment Drainage System provide for the diversion of upper catchment runoff and the containment of potentially contaminated water respectively. These systems are described in Sections 4.1.1 and 4.1.3 of this Plan. Following the period of advance pit dewatering, the site will operate under a negative water balance.

3. **Recycling of Contained Water**

 The Internal Catchment Drainage System, a series of sediment control structures, catchment dams and waterways have been constructed around individual infrastructure components. The erosion, sediment and salinity controls for the CGO are described in the Erosion and Sediment Control Management Plan (ES CMP) and summarised in Section 4.1.4.

Surface waters that collect within the Internal Catchment Drainage System will be managed by a series of contained water storages, bunds and drains. Internal Catchment Drainage System contained water storages for CGO runoff comprise storages D1, D2, D3, D4, D5 and D8B. Contained water storages D1 to D5 and D8B will be used to contain runoff from the waste emplacements and general site area. Water will be pumped to contained water storages D6, D9 or D10 (process water storages) for consumption during ore processing. A summary of the capacity and function of each of these contained water storages is provided in Section 4.2.1.

Drains will be constructed around the perimeter of the process plant and will collect and channel surface waters to contained water storage D5. Any incident rainfall, spilt process water or other substances (including spilt process chemicals in the unlikely event of a tank rupture or other accidental spill) will report to this storage (North Limited, 1998a).

Upslope diversion drains and/or bunds and a sediment dam will be constructed to manage surface water runoff around the perimeter of the additional soil stockpile located in the north of ML 1535 (outside the Internal Catchment Drainage System) (Figure 2).

During the operations phase, the contained water storage D6 will be the main source of make-up water for the process plant. Inputs to D6 include:

- water from the tailings storage facilities;
- water pumped from contained storages around the waste emplacements and lake protection bund (i.e. D1 to D4 and D8B);
- process plant area runoff (i.e. D5);
- water from the open pit;
- water from the open pit dewatering borefield;
- water pumped from the saline groundwater supply borefield within ML1535; and
- waters pumped from contained water storages D9 and D10 (includes water from the Bland Creek Palaeochannel borefield, Lachlan River water source and eastern saline borefield).

3 Contained water storage D8A was filled once the open pit encroached on the D8A footprint.
Residual cyanide levels in storage D6 are expected to be well below those levels expected in the tailings storage facilities. Recycled waters from the tailings thickener will go directly to the process plant (North Limited, 1998a).

D9 will contain make-up water from the Bland Creek Palaeochannel borefield and eastern saline borefield groundwater, site catchment water, pit dewatering water and incidental rainfall and Lachlan River water entitlements, but will not contain supernatant water from the tailings storage facilities. Water within contained water storage D9 will be pumped to D6 as required.

D10 will contain water from the Bland Creek Palaeochannel borefield and eastern saline borefield groundwater and Lachlan River water entitlements. The D10 process water storage will be constructed to provide additional water supply security for the first oxide ore processing campaign. Water from D10 would be pumped to D9 prior to use in the processing facilities.

Toe drains and contained water storages D1, D2, D4 and D8B have been constructed in stages around the waste emplacements and ore stockpile areas, as required. These structures are designed to capture any potentially saline surface runoff or seepage emanating from the waste emplacement areas.

Any contained water generated on the top surface and internal batters of the perimeter waste emplacement will be directed to a contained water storage located adjacent to the eastern edge of the open pit (contained water storage D3).

The contained water storages will be managed in such a manner to minimise potential water quality impacts. Containment storages will be sized to contain all water to at least a 1 in 100 year average recurrence interval (ARI) rainfall event (or a 1 in 1,000 year ARI rainfall event for those storages containing runoff from the plant site and tailings storage facilities). The 1 in 100 year and 1 in 1,000 year ARI events are quantified in Section 4.2 of this WMP.

4. Progressive Stabilisation and Revegetation of Disturbed Areas

Areas disturbed during mining operations will be progressively rehabilitated during the mine life. Rehabilitation will involve re-profiling of mine landforms, where necessary, to provide the required long-term landform stability. Following stabilisation, the available areas will be revegetated with appropriate plant species. It is anticipated that once rehabilitated areas become established, surface runoff will be of comparable quality to neighbouring (non-mined) areas.

Rehabilitation works will be undertaken in accordance with the CGO Rehabilitation Management Plan (RMP) and Condition of Authority 12 (Section 2.2) and will be described in the MOP in accordance with Conditions of Authority 25(4)(b).

Regard shall also be had to the general principles of vegetation stabilisation contained within Managing Urban Stormwater – Soils and Construction Volume 2E Mines and Quarries (Department of Environment and Climate Change [DECC], 2008).

The above principles guide the management of the quantity of water at the CGO. The minimisation of areas of disturbance and the progressive stabilisation and revegetation of disturbed areas minimises the volume of water to be managed at the CGO, while the containment of potentially contaminated water and the recycling of contained water reduces the quantity of water required for the CGO from the Bland Creek Palaeochannel borefield and eastern saline borefield and the Lachlan River (via the Jemalong irrigation channels).
These principles also contribute directly to the management of water quality through the minimisation of potential for contamination of waters. Minimising the area of disturbance and progressive stabilisation and revegetation of disturbed areas reduces the potential for contamination of surface waters through contact with exposed soils (e.g. suspended solids). The potential for off-site water quality impacts is also minimised through the isolation, containment and reuse of contaminated waters.

Surface water quality will also be managed through the construction and operation of the water management structures described in Sections 4.1 and 4.2. The isolation of the mine site from the lake and upper catchment is designed to minimise the potential for mine-related impacts on surface waters around the mine site, including Lake Cowal. Within the mine site and around areas of disturbance associated with the development of the CGO, surface water quality will be managed through the operation of the integrated erosion, sediment and salinity control system (Section 4.1.4). The site water management system is designed to contain and manage saline surface water in order to manage river salinity as described in the ESCMP.

Management of the quantity and quality of groundwater within and around the mine site is primarily related to the operation of the Bland Creek Palaeochannel borefield and saline groundwater supply borefields, which are discussed in Section 4.2.1 and the pit dewatering system, which is described in Section 4.2.2. The pit dewatering system is designed to isolate saline groundwater in order to manage industrial and river salinity as described in the ESCMP.

Jemalong Land and Water Management Plan

As described in Section 10.1, the JLWMP aims to:

guide the development of the Plan area so that land and water resources are used in a way which is profitable and improves and sustains the environment for current and future generations (Jemalong Land and Water Management Plan Steering Committee, 2000).

The goals of the JLWMP relevant to the WMP include:

- **To reduce accessions to the watertable, thereby minimising salinity and waterlogging**;
- **To minimise the adverse effects of local agricultural practices on soil and water quality**;
- **To minimise adverse downstream effects of local agricultural practices.**

The design of the CGO water management system to contain all potentially contaminated water (contained water) generated within the CGO area while diverting all other water around the perimeter of the site is consistent with the goals of the JLWMP, in that it isolates the CGO from the local environment. In this manner the adverse effects on soil and water quality are minimised.

CGO water management strategies minimise the potential for accessions to the watertable, thereby minimising salinity and waterlogging, primarily through the minimisation of areas of surface disturbance, the recycling of contained water (such that groundwater is the lowest priority water supply) and the progressive stabilisation and revegetation of disturbed areas. The dewatering of the CGO open pit and the extraction of water from the CGO water supply borefields is also expected to lower waterlogging potential as it involves the removal of water from the groundwater system.

In regards to salinity, the JLWMP identified moderate to severe salinisation occurring at a number of locations, including Lake Cowal and Lake Nerang Cowal which act as evaporation basins, concentrating the salt derived from surface water inflows.

The management of salinity within and around the CGO is described in the ESCMP. A summary of the contents of the ESCMP, including salinity management measures is provided in Section 4.1.4.
The CGO water management system and water management strategies have been developed to be consistent with the JLWMP’s desire to minimise downstream effects of local agricultural practices, in that they seek to minimise adverse downstream effects.

Lake Cowal Land and Water Management Plan

The Lake Cowal Land and Water Management Plan establishes the following vision against which objectives and actions need to be addressed:

We are managing the lake to sustain and enhance the economic, social and ecological well being of the Lake Cowal area for future generations.

The Lake Cowal Land and Water Management Plan has the following objectives:

1. maintain agricultural productivity;
2. maintain vegetation cover;
3. maintain soil structure; and
4. address catchment issues of groundwater recharge and the threat of salinity.

The water management strategies presented in Section 4 are designed to minimise the potential impact of the CGO, including potential salinity impacts on Lake Cowal and surrounding waters, including groundwater. As described above management strategies for the construction and operation phases involve the following principles (North Limited, 1998a):

1. Minimising disturbance areas
2. Containment of Potentially Contaminated Water
3. Recycling of Contained Water
4. Progressive Stabilisation and Revegetation of Disturbed Areas

The CGO principles of minimising disturbance areas and progressive stabilisation and revegetation of disturbed areas are consistent with the Lake Cowal Land and Water Management Plan’s objective of maintaining vegetative cover and soil structure. Management options presented in Chapter 8 of the Lake Cowal Land and Water Management Plan include the provision of water monitoring at Lake Cowal. Monitoring programmes developed for the CGO are summarised in Section 4.3 of this WMP.

Mining Operations Plan

A new MOP was prepared for the period September 2016 to August 2018 and was approved by the DRG on 31 May 2017. The MOP was prepared in accordance with the DRE’s (2013) ESG3: Mining Operations Plan (MOP) Guidelines and the requirements of Condition 25(4) of the ML Conditions of Authority.

Operations will be carried out in a manner that does not cause or aggravate air pollution, water pollution (including sedimentation) or soil contamination or erosion, unless otherwise authorised by a relevant approval, and in accordance with the MOP (Condition 14 of the ML Conditions of Authority).

4.1 CONSTRUCTION PHASE

The following major components of the CGO water management system were constructed during the CGO construction phase:

(i) Up-catchment Diversion System.
(ii) Lake isolation system (comprising the temporary isolation bund, lake protection bund and perimeter waste emplacement).
(iii) Internal Catchment Drainage System.
(iv) Integrated erosion, sediment and salinity control system.
(v) Pit dewatering system.

These structures are described in the following subsections.

In addition to these structures, the Bland Creek Palaeochannel borefield, the Bore 4 pump station and water supply pipeline (Figure 5) were also established during the construction phase.

While not a water management structure, the boundary fence required in accordance with Development Consent Condition 2.3 has the potential to impact on the local flood regime. The boundary fence is described in Section 4.1.7, along with measures designed to minimise potential impacts on the quality of surface waters and the local flood regime.

As required by Development Consent Condition 4.4(c)(i) the lake protection bund, contained water storages and tailings storage facilities have been constructed to the requirements of DPI – Water, EPA and the NSW Dams Safety Committee (DSC).

As required by Condition of Authority 25(9), an initial MOP was submitted prior to the commencement of construction on site. This initial MOP was prepared as required by Condition of Authority 25(9) and included plans for the construction and maintenance of site water management structures. Ongoing maintenance of site water management structures will be conducted with regard to both the Volume 1 of Managing Urban Stormwater – Soils and Construction (Landcom, 2004) and Managing Urban Stormwater – Soils and Construction Volume 2E Mines and Quarries (DECC, 2008).

4.1.1 Up-catchment Diversion System

The Up-catchment Diversion System is a permanent feature that has been developed in stages throughout the mine life and has been designed to convey upper catchment water around the western edge of the CGO (near the tailings storage facilities) and into existing drainage lines to the north and south. During the construction phase the western edge of the diversion surrounding the tailings storage facilities was formed, while the section around the southern waste emplacement was constructed in Year 3 (North Limited, 1998a).

The Up-catchment Diversion System assists in managing the quantity of surface water within and around the mine site by conveying upper catchment water around the site. In this way the Up-catchment Diversion System minimises the quantity of surface water requiring management within the mine site. The quantity of water to be managed by the Up-catchment Diversion System has been set through the adoption of the enhanced “green house” 1 in 1,000 year ARI design criterion (Gilbert and Sutherland, 1997). The critical duration of the 1 in 1,000 year ARI event for each reach of the Up-catchment Diversion System will be used to determine the required peak flow capacity.

The diversion of clean water run-off from upland slopes around the CGO is consistent with the provisions of the Landcom (2004) Volume 1 of Managing Urban Stormwater – Soils and Construction and contributes to the management of both quality and quantity of surface waters within and around the site.

Development of the Up-catchment Diversion System involved the reinstatement of natural stream features to enhance long-term stability of the system and compatibility with the existing hydrology of the area. These include features such as a low flow drainage path within a wider floodplain (approximately 65 m wide), meanders and pool/riffle sequences (North Limited, 1998a).
Source: Barrick (2010, 2013); Topographic Base - (Fairholme, Wamboyne, Jemalong and Wirrinya) Department of NSW (2007); Homesteads - Geoscience Australia (2006)
The Up-catchment Diversion System has been constructed to simulate endemic drainage features that are known to be stable in the prevailing hydrological regime. Riparian vegetation species have also been incorporated into the diversion system (Gilbert and Sutherland, 1997).

Where the Up-catchment Diversion System coincides with existing drainage lines, works have been focused on the reinstatement of natural stream features to enhance long-term stability and compatibility with existing hydrology of the area and includes constructed rock outfalls at confluences with existing natural drainage lines to minimise erosion. In the absence of suitable existing drainage paths, development of the Up-catchment Diversion System required the construction of a channel containing a low flow drainage path within a wider floodplain. Construction in these sections included the reinstatement of natural stream features to enhance long-term stability and compatibility with existing hydrology of the area.

4.1.2 Lake Isolation System

The lake isolation system has been designed to hydrologically separate the open pit and Lake Cowal during development, mining and post-closure of the CGO (North Limited, 1998a). Figure 6 presents a conceptual cross-section of the lake isolation system. The lake isolation system provides for the management of the quantity of surface waters by limiting the volume of water requiring management within the Internal Catchment Drainage System (Section 4.1.3).

The lake isolation system comprises a series of isolation embankments that are designed to prevent the inflow of water from Lake Cowal into the open pit development area during periods of high water levels. The lake isolation system comprises the following components (North Limited, 1998a) (Figure 6):

- temporary isolation bund;
- lake protection bund; and
- perimeter waste emplacement.

The lake isolation system will be concurrently rehabilitated as it is developed, in order to provide a new lake foreshore. Once the outer surface of the lake isolation system has been stabilised and revegetated, the runoff from these surfaces is expected to be of suitable quality (comparable to runoff from undisturbed areas) to enable surface water runoff to the lake (North Limited, 1998a).

The lake isolation system contributes to the management of surface water quality around the mine site (and in particular within Lake Cowal) by isolating the mine site from its downslope catchment. As described below the lake isolation system prevents the discharge to the lake of surface water runoff from disturbed areas.

The temporary isolation bund, lake protection bund and perimeter waste emplacement are illustrated on Figure 6 and described below.

Temporary Isolation Bund

The temporary isolation bund is designed to control water inflow to the pit development area from the lake during construction of the lake protection bund. Prior to the construction of the temporary isolation bund, a continuous silt fence was erected around the construction zone of the temporary isolation bund. The silt fence was installed prior to construction commencing in order to trap fine sediment and prevent suspended material migrating into the main body of the lake (North Limited, 1998a).
Refer to Figure 8b

Not to Scale

Source: Barrick (2013)
The temporary isolation bund was constructed using inert rock material sourced during pre-stripping of the waste emplacement and open pit. Fill used for construction was tested for geochemical and geotechnical suitability prior to construction commencing. Suitable fill was sufficiently impermeable, with low dispersivity and low salinity and not acid forming (North Limited, 1998a). Borrow pits were also used to source suitable material where necessary.

The temporary isolation bund was developed by end-tipping fill, working at both ends of the temporary isolation bund/shoreline intersection in an arc toward the centre. The movement of trucks during construction was used to achieve the required compaction levels of the bund (North Limited, 1998a).

The bund has batter slopes of 1(V):5(H) and 1(V):4(H) on the lake and open pit walls, respectively. The height of the bund increases from zero at the edges of the arc to a maximum of up to 2 m in the centre (North Limited, 1998a). Figure 6 shows a typical cross section of the temporary isolation bund.

Evolution (Barrick) received approval from the then DTIRIS-DRE on 14 May 2012 (via approval of a variation to the Cowal Gold Mine Mining Operations Plan [January 2011 – September 2012] [Barrick, 2011]) to raise the height of the Temporary Isolation Bund by 0.5 m to provide for future lake level rises. These works will occur once the lake water recedes and conditions are suitable for the works to commence. The works would also involve rock armouring the lake side outer batter slope of the bund to minimise erosion from wave action.

The management and disposal of waters captured behind the temporary isolation bund during construction and operations is described in Section 9.

The temporary isolation bund is a short-term feature that was used to isolate the pit from the lake during the construction phase while the lake protection bund is constructed. Accordingly, once the lake protection bund is constructed and revegetated, the isolation function of the temporary isolation bund will be superseded (North Limited, 1998a).

Lake Protection Bund

The lake protection bund is a low permeability embankment designed to prevent water inflow (during periods of high lake water level) from the lake into the open pit development area over the life of the mine and over the long-term (North Limited, 1998a).

The design of the lake protection bund has been formulated to meet the following objectives:

- provision of a low permeability barrier between the open pit and Lake Cowal;
- development of a revegetated, low profile stable permanent landform; and
- revegetation of the embankment and remnant isolation bund as early as possible in the mine life to permit early re-establishment of the foreshore ecotone.

The lake protection bund was constructed approximately 10 m behind the temporary isolation bund (closer to the pit) (Gilbert and Sutherland, 1997) and was constructed to relative level (RL) 208.25 m (North Limited, 1998a), to a maximum height of 4 m (Gilbert and Sutherland, 1997). Below RL 207.75 m it was built as a two-zone earthfill embankment and to meet specific engineering criteria for compaction to ensure that the required compaction densities are achieved (North Limited, 1998a).

Topsoils within the footprint of the bund were excavated to a depth of approximately 1 m (North Limited, 1998a).
The lake protection bund was constructed from suitable low salinity lake sediments sourced from within the open pit development area. Once the structure was constructed to its final height, topsoil (organic lake bed sediments previously stripped from the open pit development area) was applied to the surface to provide a suitable growth medium for reformation of the foreshore habitat and ecotone (North Limited, 1998a). Consistent with the approved long-term rehabilitation concepts for the outer batters of the waste rock emplacements and tailings storage facilities (Sections 4.2.4 and 4.2.7) and based on the results of rehabilitation trials conducted to date, the rehabilitation cover system for the outer batter of the lake protection bund includes cross-ripping primary waste rock mulch with topsoil to provide long-term slope stability and reduce erosion potential.

Perimeter Waste Rock Emplacement

ROM oxide waste rock taken from the open pit during the pre-stripping phase has been placed behind the lake isolation bund to form the perimeter waste emplacement, which is the third component of the lake isolation system.

The perimeter waste emplacement has been constructed to RL 223 m and surrounds the pit to the north, east and south. The emplacement is located behind the lake protection bund and was constructed from oxide mine waste rock with the outer face constructed using low salinity topsoils/soils (North Limited, 1998a). The approved rehabilitation cover system for the outer batters of the perimeter waste rock emplacement has been revised based on the results of rehabilitation trials conducted to date and includes cross-ripping primary waste rock mulch with topsoil to provide long-term slope stability and to reduce erosion potential.

The perimeter waste emplacement was constructed in approximately 5 m lifts built up to a maximum height of approximately 18 m above ground level. The outer batter profiles are 1(V):5(H) with reverse graded berms installed at vertical height intervals of approximately 5 m. Development of the emplacement commenced during pre-stripping with the eastern portion reaching the final RL of 223 m and other parts being built up to RL 213 m. During Year 1 the embankment was lengthened and raised to the final RL on the northern and southern sides of the open pit. This completed the shielding of the open pit to the east, north and south.

Following stabilisation and revegetation of the outer batters of the lake isolation system, any runoff from these surfaces is anticipated to be of suitable quality (comparable to runoff from undisturbed areas) to enable release to the lake (Gilbert and Sutherland, 1997).

4.1.3 Internal Catchment Drainage System

The Internal Catchment Drainage System is a permanent water management feature designed to operate during the life of mine and after mine rehabilitation and closure. During the CGO construction phase, the system involved the development of a new permanent catchment divide in the form of a low mound running from Cowal West Hill, surrounding the tailings storage facilities and extending to the process plant area. The mound is designed to act as a new catchment divide separating water external to the CGO site and contained waters generated within the area of disturbance (i.e. waters that could contain increased sediment loads, salinity or other substances). Where the topography of the site is such that water will flow alongside the mound, permanent waterways have been developed to direct surface flows (North Limited, 1998a). The Cowal West Hill has since been covered as a result of construction of the northern waste rock emplacement, with surface water runoff managed via perimeter toe drains and/or bunds (Section 4.2.3).
The management of the quantity of surface water within the Internal Catchment Drainage System has been achieved through the operation of the Up-catchment Diversion System, the lake isolation system and dividing mounds that have been sized for extreme hydrological conditions (1 in 1,000 year ARI) (Gilbert and Sutherland, 1997). This is approximately equivalent to a total of 216 mm of rainfall over 48 hours (Gilbert & Associates, 2003). Surface waters that collect within the Internal Catchment Drainage System are managed by a series of contained water storages, bunds and drains as described in Section 4.2.1. The water management structures that form the Internal Catchment Drainage System will be inspected on a regular basis as detailed in the ESCMP.

Isolation of groundwaters within the Internal Catchment Drainage System will be achieved by virtue of the permanent groundwater sink that will be formed as a result of open pit dewatering. The effect of the open pit will be to locally depress the groundwater table (potentiometric surface) such that all groundwater movement in the surrounding area will be towards the void (Gilbert and Sutherland, 1997).

Disposal of Excess Water

Development Consent Condition 4.3 relates to the disposal of excess water and reads:

There shall be no disposal of water from the internal catchment drainage system to Lake Cowal under any circumstances.

During the construction and operation of the CGO surface water collected within the limits of the Internal Catchment Drainage System will be directed to the process water storage dam (D6) for use (as raw water, dust suppression and conditioning of construction materials) in the process plant (North Limited, 1998a).

4.1.4 Integrated Erosion, Sediment and Salinity Control System

As described above, surface water runoff from mine landforms and disturbed areas could potentially contain sediment, salinity, oil and grease and process reagents.

The CGO integrated erosion, sediment and salinity control system is presented in the ESCMP and is designed to prevent the discharge of sediment-laden runoff from the mine site to the lake.

The ESCMP identifies both temporary and permanent measures that will be adopted throughout the construction and operation of the CGO to manage the quality of surface waters within and around the mine site. These measures focus on the control of surface water runoff from mine landforms and disturbed areas and the minimisation of the potential for sediment generation.

Measures to be adopted include:

- minimising the area disturbed by the CGO and restricting access to non-disturbed areas;
- ripping and rehabilitation of hardstand areas and roads no longer required for access;
- avoidance of soil stripping operations during particularly wet or dry periods, minimising compaction during soil excavation and movement and the use of ameliorants where required (e.g. gypsum application to dispersive soils);
- use of silt fences and temporary sediment traps to minimise sediment movement;
- use of diversion banks, channels and rip-rap structures to divert surface water around disturbed areas and to control runoff velocity;
- maintaining soil stockpile slopes at a maximum acceptable angle to resist erosion;
- constructing all access roads at an appropriate slope along the contour, where practicable;
the use of spoon drains, table drains and concrete culverts to control surface runoff from access roads; and

leaving the more saline and dispersive soil horizons in-situ beneath mine landforms, where possible.

The quantity and quality of surface water runoff from mine landforms and disturbed areas will be managed through the selection of appropriate design criteria for the sizing of sediment control structures as described in the ESCMP.

The ESCMP identifies three different types of salinity that are considered relevant to the CGO (i.e. dryland, river and industrial salinity). These salinity types are described in the ESCMP. A summary of the salinity management measures that may be adopted at the CGO is presented below.

Dryland Salinity

There is no known dryland salinity in Lake Cowal (Australian Water Technologies Pty Ltd, 1999). Notwithstanding, measures to be adopted to manage the factors that affect dryland salinity as discussed in the ESCMP include:

- Minimising the areas disturbed by the Project components and restricting access to non-disturbed areas.
- Identification of saline soils (infill testing) and selective soil resource management.
- Identification of low salinity construction material (construction fill testing) and selective resource management.
- Fencing ML 1535 to restrict stock and prevent overgrazing and erosion.
- Implementation of appropriate erosion and sediment control systems and ongoing monitoring and maintenance.

River Salinity

Measures to be adopted for the CGO to manage river salinity include:

- Containment and management of saline surface water runoff.
- Open pit/final void salinity sink.

Industrial Salinity

Measures to be adopted for the CGO to manage industrial salinity include:

- Isolation of saline groundwaters by the open pit.
- Containment of potentially saline seepage generated from waste rock emplacement areas.
- Containment and management of saline surface water runoff.
- Final void management and monitoring.

4.1.5 Pit Dewatering System

The operation of the pit dewatering system is described in Section 4.2.2.
4.1.6 Bland Creek Palaeochannel Borefield and Water Supply Pipeline

The construction and operation of the Bland Creek Palaeochannel borefield is described in Section 4.2.1.

4.1.7 ML 1535 Boundary Fence and Security Fence

Fencing and signposting has been erected around the ML 1535 boundary to secure the mine site in accordance with Development Consent Condition 2.3. The fence comprises a standard four strand farm fence.

A full description of the fence design to minimise the impact on water birds and aquatic species in accordance with Development Consent Condition 2.3 is provided in the CGO Compensatory Wetland Management Plan (CWMP).

As described in Section 4.1.4, CGO erosion and sediment controls are described in the ESCMP. Erosion and sediment control measures specific to the ML 1535 fences are represented below:

Erosion and sediment control measures for the ML 1535 boundary fence and security fence to be adopted to mitigate potential impacts on soils will include (North Limited, 1998a; Section 4.1.2):

- Minimising the area disturbed by the above Project component and restricting access to non-disturbed areas.

 The alignment of the boundary fence will be clearly delineated with survey pegs prior to the commencement of construction of each section. Unrestricted vehicular plant access to undisturbed areas will not be permitted. Vegetation in close proximity to the fence alignment will be demarcated with flagging tape (or similar) so as to prevent disturbance. All employees undertaking the site induction/training programme will be made aware of the importance of remaining within the defined works areas.

 Any access tracks or other land disturbances resulting from construction of the fence will be ripped, topsoiled and revegetated with a cover crop as soon as they are no longer required in accordance with condition 18 of the Conditions of Authority.

In addition to these measures, the ML 1535 boundary fence and security fence will be subject to weekly inspections and maintenance, which will include the removal of debris along the fences. The removal of debris will minimise the potential for the fences to affect the local flood regime.

4.2 OPERATIONS PHASE

The operations phase of the CGO has involved some changes to the construction phase water management system, including:

- augmentation of the external water supply, including the development of a saline groundwater supply borefield within ML 1535;
- development of the eastern saline borefield;
- changes to the alignment of a minor portion of the Up-catchment Diversion System;
- changes to the number and size of the contained water storages;
- changes to the Internal Catchment Drainage System; and
- relocation of some of the existing erosion and sediment control structures.

These changes are described in the following sections.
The main water management issues relevant to the operational phase of the CGO are:

- supply of suitable quantities and qualities of water for ore processing and potable use;
- maximising the reuse of saline water from pit dewatering;
- provision of full containment for mine site water through the Up-catchment Diversion System and Internal Catchment Drainage Systems (described in Sections 4.1.1 and 4.1.3); and
- control of runoff from major mine landforms (waste emplacements and tailings storage facilities) in a manner consistent with efficient and safe mining operations.

The water management plans for Years 14 and 18 (2018 and 2022 respectively) of the approved CGO are presented on Figures 7a and 7b.

Selection of design criteria for the various components of the operational water management system have been based on consideration of (Gilbert and Sutherland, 1997):

- criteria used or recommended by the regulatory authorities;
- accepted good practice and criteria recommended by industry groups; and
- consideration of hazards and acceptable or reasonable risk.

In general, a criterion of 1 in 1,000 ARI 48 hour event has been selected for containment of process water or other waters likely to contain process water during the mine life. In the event of a spill, any waters which escape from a containment storage would be fully contained within the Internal Catchment Drainage Systems and would ultimately report to the open pit (Figures 7a and 7b). A criterion of 1 in 1,000 year ARI has been selected to ensure that there will be a low risk of spill during the mine life but in the knowledge that any spill will be fully contained and will not impact Lake Cowal (Gilbert and Sutherland, 1997). A 1 in 1,000 ARI 48 hour event is approximately equivalent to a total of 216 mm of rainfall over 48 hours (Gilbert & Associates, 2003).

A summary of the hydrological design criteria for the CGO’s water management system is provided in Table 4 below.

Table 4

Water Management System – Hydrological Design Criteria

<table>
<thead>
<tr>
<th>Component</th>
<th>Aspect</th>
<th>Design Criteria</th>
<th>Consequence of Design Event Exceedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tailings Storage Facilities</td>
<td>Containment Capacity</td>
<td>Max. net accumulation of water from a 1 in 1,000 year ARI event of 3 months duration</td>
<td>Controlled overflow to contained water storages or open pit</td>
</tr>
<tr>
<td>Process Plant</td>
<td>Containment Capacity</td>
<td>Runoff from a 1 in 1,000 year ARI storm of 48 hours duration</td>
<td>Controlled overflow to contained water storage D3 or open pit</td>
</tr>
<tr>
<td>Contained Water Storage (D5) (as modified for the Modification approved on 22 July 2014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporary Diversion Bund/Toe Drains (around waste emplacements)</td>
<td>Conveyance Capacity</td>
<td>Peak discharge from the critical duration 1 in 100 year event</td>
<td>Short duration or overflow to adjacent drainages/lake foreshore</td>
</tr>
<tr>
<td>Waste Rock Emplacement Contained Water Storages (D1, D2, D3, D4, and D8B)</td>
<td>Storage Capacity</td>
<td>Runoff from contributing catchment resulting from a 1 in 100 year ARI rainfall event of 48 hours duration</td>
<td>Overflow to adjacent drainage/lake foreshore</td>
</tr>
</tbody>
</table>
Table 4 (Continued)
Water Management System – Hydrological Design Criteria

<table>
<thead>
<tr>
<th>Component</th>
<th>Aspect</th>
<th>Design Criteria</th>
<th>Consequence of Design Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporary Sediment Dams</td>
<td>Storage Capacity</td>
<td>Runoff from the 1 in 20 year 1 hour rainfall event</td>
<td>Controlled overflow to contained water storages or open pit</td>
</tr>
<tr>
<td>Process Water Storage (D6)</td>
<td>Containment Capacity</td>
<td>1 in 1,000 year ARI storm of 48 hours duration above normal operating level</td>
<td>Controlled overflow to contained water storages D5, D3 or open pit</td>
</tr>
<tr>
<td>Process Water Storage (D9)</td>
<td>Containment Capacity</td>
<td>1 in 1,000 year ARI storm of 48 hours duration above normal operating level</td>
<td>Controlled overflow to contained water storages D8B, D2, D5 or open pit</td>
</tr>
<tr>
<td>Process Water Storage D10</td>
<td>Containment Capacity</td>
<td>1 in 1,000 year ARI storm of 5 days duration above normal operating level</td>
<td>Controlled overflow to contained water storages D2 and open pit</td>
</tr>
<tr>
<td>Up-catchment Diversion System</td>
<td>Conveyance Capacity</td>
<td>Peak discharge from enhanced ‘green house’ 1 in 1,000 year ARI rainfall event</td>
<td>Controlled overflow to contained water storages or open pit</td>
</tr>
</tbody>
</table>

Source: After Barrick (2009a); Barrick (2013); and pers. comm, P. Greenhill, 20 April 2015.

The construction and operation of these structures according to the design criteria presented in Table 4 will provide for management of the quantity of surface water and groundwater within and around the mine site through the establishment of appropriate storage and drainage capacities.

4.2.1 Water Supply

The main water usage for the CGO will be associated with ore processing. Other water supply requirements include water for dust suppression on haul roads and roads, tailings storage facilities embankment construction, and potable and non-potable uses around the mine site (North Limited, 1998a).

The estimated average daily process plant water demand would be approximately 18.8 ML/day for primary ore processing and approximately 35.5 ML/day for oxide ore processing (Hydro Engineering & Consulting, 2016).

The water supply scheme (to make up losses from the system) involves collecting internal site runoff and developing surface and groundwater resources. The water management system (and water supply arrangements) for the approved CGO are described below and shown on Figure 8.

CGO water requirements will be met through the use of waters from the following sources in order of priority use (Figure 8):

- **Site water supply**:
 1. Return water from the tailings storage facilities.
 2. Open pit sump and dewatering borefield.
Notes:
* Including tailings pond and pond evaporation.
+ Subject to separate approval under the NSW Environmental Planning and Assessment Act, 1979.
^ Not accessible when borefield is inundated by Lake Cowal.
Water supply priority from external sources subject to water market conditions.
3. Rainfall runoff from mine waste emplacements, and other areas which is collected as part of the Internal Catchment Drainage System in contained water storages.

- **External water supply:**
 4. Eastern saline borefield located approximately 10 km east of Lake Cowal's eastern shoreline.
 5. Bland Creek Palaeochannel borefield which comprises four production bores within the Bland Creek Palaeochannel located approximately 20 km to the east-northeast of the CGO.
 6. Saline groundwater supply borefield located in the south-east of ML 1535.
 7. Licensed water accessed from the Lachlan River which is supplied via a pipeline from the Jemalong Irrigation Channel (i.e. Bore 4 pump station).

In addition to the above water supply sources, Evolution has identified additional potential external sources which, upon further investigation, may augment supply. These options include (Barrick, 2009a):

- development of additional bores or borefields in saline aquifers in the region;
- the purchase of rights to existing licensed groundwater entitlements from the alluvial aquifer associated with the Lachlan River in an area disconnected from the Bland Creek Palaeochannel;
- the purchase of additional Lachlan River surface water rights via purchase or trade of High Security and/or General Security water licences; and
- development of a surface water collection system which could be installed using Evolution’s harvestable water rights.

Further investigation and feasibility assessments would be undertaken for these options. Relevant approvals would be obtained should these options be identified as feasible.

Bland Creek Palaeochannel Borefield and Water Supply Pipeline

As described above, the Bland Creek Palaeochannel borefield and water supply pipeline forms part of the CGO water supply. The following section describes the construction and operation of the Bland Creek Palaeochannel borefield and water supply pipeline, including measures designed to manage groundwater quality and quantity.

The Bland Creek Palaeochannel consists of an alluvial sequence subdivided into an upper and lower geological unit:

- The upper zone (Cowra Formation) consists of a thick (95 m to 133 m) unconsolidated brown clay with minor silt and fine sand horizons. There are few water bearing horizons within this clay aquitard unit. Where present they are of limited areal extent, of relative low permeability and high salinity (16,000 μS/cm to 50,000 μS/cm).
- The lower zone (Lachlan Formation) underlies this thick clay unit and is restricted to a deep bedrock channel into which sand and gravel has been deposited. These palaeochannel sediments generally have a high permeability, yield large groundwater supplies and contains relatively low salinity water. The piezometric surface is around 9 to 12 m beneath the surface with fluctuations between 0.5 to 1.8 m. Thus there is at least 80 m of available water level drawdown. It is into this deep Bland Creek Palaeochannel aquifer that the production bores are screened and groundwater extracted.

The interpreted extents of the Lachlan and Cowra Formations are shown on Figure 9. Pump tests have indicated that there is poor hydraulic connection between the upper and lower zone aquifers.
Extraction Limits

Water extraction from the Bland Creek Palaeochannel is licensed by WAL 31864 under the Water Sharing Plan for the Lachlan Unregulated and Alluvial Water Sources 2012\(^4\). The maximum daily volume of water approved to be extracted in accordance with the Development Consent Condition 4.1(b) is 15 ML/day or 3,650 megalitres per year (ML/year).

A borefield of four production bores has been developed within the Bland Creek Palaeochannel located approximately 20 km to the east-northeast of the CGO site (Figure 9). The borefield reticulation system includes a break pressure/balancing storage after the final bore, a buried 600 mm diameter pipeline to the CGO site and power supply along existing road reserves. The bores and pipeline route are shown on Figure 9.

All bores from the Bland Creek Palaeochannel borefield will be metered to ensure the quantity of groundwater extracted from the Bland Creek Palaeochannel borefield does not exceed the above limits.

Groundwater Contingency Strategy

In addition to the above, extraction from the Bland Creek Palaeochannel Borefield will be managed in accordance with groundwater trigger levels developed in consultation with DPI – Water and other water users within the Bland Creek Palaeochannel, including stock and domestic users and irrigators.

The trigger levels are as follows:

- Bland Creek Palaeochannel Borefield area: Bore GW036553 (Figure 9) (trigger levels of 137.5 m Australian Height Datum [AHD] and 134 m AHD).
- Billabong area: Bore GW036597 (Figure 9) (trigger level 145.8 m AHD).
- Maslin area: Bore GW036611 (Figure 9) (trigger level 143.7 m AHD).

Groundwater levels associated with the Bland Creek Palaeochannel Borefield are monitored on a continuous basis by DPI – Water’s groundwater monitoring bore GW036553 (Figure 9).

Investigation and mitigation contingency measures have been developed should groundwater levels reach either RL 137.5 m AHD (trigger for investigation) or RL 134 m AHD (trigger for mitigation) (refer Section 6.2.2).

To date, the effect of the Groundwater Contingency Strategy is that pumping from the Bland Creek Palaeochannel Borefield ceases when required to meet the trigger levels described above, and water requirements at the CGO are met by alternative internal or external water supplies, including Lachlan River Water Entitlements (Section 4.2.1).

Extraction would continue to be managed to maintain groundwater levels above the established trigger levels (Barrick, 2013).

\(^4\) Based on 1 megalitre (ML) per unit share.
Water Pipeline from the Bland Creek Palaeochannel Borefield to the CGM

The pipeline route was designed so that it did not disturb bird breeding areas, important habitat or similar sensitive areas. No vegetation was cleared without prior assessment and approval from DPI – Water (Commissioners of Inquiry for Environment and Planning, 1999). A permit under the Rivers and Foreshore Improvements Act, 1948 (now repealed and replaced by the Water Management Act, 2000) was obtained prior to the installation of the water supply pipeline across the bed of Lake Cowal.

As required by Development Consent Condition 4.2(a)(i), the water pipeline from the Bland Creek Palaeochannel borefield to the CGO was constructed in accordance with the requirements of DPI – Water and in consultation with the DPI-Fisheries. Potential impacts on surface water quality during the construction of the pipeline were minimised through the adoption of the soil stripping and erosion and sediment controls as described in the Soil Stripping Management Plan (SSMP) and ESCMP respectively.

Soil stripping field practices and techniques that were undertaken during the construction of the borefield and pipeline are described in the SSMP and are summarised below:

Prior to initiation of soil stripping activities, the site supervisor will ensure that the appropriate protocols (eg. Aboriginal Heritage and land clearance requirements in accordance with Consent Conditions 3.3 and 3.4(b)) have been followed and the recommended stripping depths are confirmed ahead of stripping.

During pipeline burial, soil will be removed to one side of the pipeline trench alignment. Topsoil and subsoil (where present and identifiable) will be separately stockpiled. Pipeline burial will be conducted progressively, with each section completed and backfilled as the next section is excavated. Upon completion of each section of the trench works, subsoils will be replaced in the trench, followed by topsoil.

The control of soil erosion and dust along the pipeline and borefield areas will be in accordance with the DMP and ESCMP and will include the adoption of measures such as:

(i) watering of works areas when necessary;

(ii) installation of soil/sediment control measures where necessary (eg. the installation of silt fencing); and

(iii) regular inspection of works and stockpile areas and enactment of any remedial or response measures with respect to dust and soil/sediment control.

The water pipeline will be buried at a time when conditions are suitable to allow access by heavy vehicle (ie. pipeline burial within the high water mark of Lake Cowal will be undertaken when the lake is dry). Soil stockpiles will be short term features during pipeline burial and soils will be promptly replaced during the progressive rehabilitation of the pipeline burial route.

Erosion and sediment controls implemented during the construction of the borefield and pipeline are described in the ESCMP and are summarised below:

Disturbance areas would be minimised during construction by restricting construction vehicles to designated access roads/tracks or along the pipeline corridor construction area itself.

During the burial of the pipeline, a temporary silt curtain would be erected around the disturbed area to trap fine sediment and prevent suspended material migrating into the main body of the lake (North Limited, 1998a). The temporary silt curtain would be installed in accordance with Chapter 6.3.4 of Managing Urban Stormwater – Soils and Construction (Department of Housing, 1998).

Temporary sediment traps and sediment filters (eg. straw bale sediment filter, sediment fences) would be installed where necessary in accordance with Sections 3.4.2 and 3.4.3 respectively, of the Urban Erosion and Sediment Control Handbook (Department of Conservation and Land Management, 1992).
The temporary erosion and sediment control systems would remain in place until all earthwork activities are completed and the buried pipeline corridor is rehabilitated.

The pipeline was laid in such a way so as not to impede the passage of fish or other animals or interfere with flood behaviour or the passage of boats and vehicles, as required by Development Consent Condition 4.2(a)(ii).

Automatic Shut Down in the Event of Pipe Rupture

In accordance with Development Consent Condition 4.2(a)(iii), an automatic shut down device was installed such that water pumping will cease immediately in the event of a pipe rupture. Such a system will negate the risk of significant impact on lake surface water quality (Department of Urban Affairs and Planning, 1998).

Leases or Private Agreements

Evolution negotiated leases/private agreements with the relevant landholders for the land requirement for the pipeline infrastructure (in accordance with former [now redundant] requirements of the CGO’s Development Consent).

Eastern Pump Station

To improve the capacity and flow of the CGO’s water supply pipeline (prior to commencement of the first oxide ore processing campaign associated with development of the Cowal Gold Mine Extension Modification), a booster pump will be constructed on the eastern side of Lake Cowal (i.e. the eastern pump station) (Figure 9). The booster pump would return the capacity of the water supply pipeline to its original design capacity of approximately 14 ML/year.

A diesel generator will be used to power the booster pump. Diesel will be stored in a 10,000 litre double-skinned storage tank, with diesel delivered by a licensed contractor.

The eastern pump station and associated diesel generator and storage tank will be constructed on a gravel and concrete pad (Figure 10), which would be raised above the surrounding cultivated paddock to avoid potential flooding impacts.

Lachlan River Water Entitlements

Water from the Lachlan River is accessed (when required) by purchasing temporary water available from the regulated Lachlan River trading market in accordance with Evolution’s High Security (WAL 14981 and WAL 13749) and General Security (WAL 13748) zero allocation WALs.

Site water supply will however be preferentially supplied from internal water sources followed by external groundwater sources and then Lachlan River water. Notwithstanding, since the commencement of operations at the CGO there has been a reliable supply of temporary water available from the Lachlan River trading market, including during periods of drought. DPI – Water trading records show that between approximately 4,000 ML and 274,000 ML of temporary water has been traded annually since records began in 2004 (Hydro Engineering & Consulting, 2016).

It is expected there would be continued reliable supply of water available from the Lachlan River trading market for the life of the approved CGO (Hydro Engineering & Consulting, 2016).
Western Pump Station Location and Access Track

LEGEND
- Mining Lease Boundary (ML 1535)
- Dwelling
- Mine Water Supply Pipeline
- Eastern Pump Station Location and Access Track

Source: Barrick (2010, 2013); Data of Orthophoto: April 2013

WATER MANAGEMENT PLAN

FIGURE 10
Eastern Pump Station

Jemalong Irrigation Channel Pump Station

Licensed water accessed from the Lachlan River is supplied via a pipeline from the Jemalong Irrigation Channel (i.e. Bore 4 pump station) (Figure 9). The Bore 4 pump station includes:

- an intake sump structure with two submersible pumps and a duty standby pump arrangement to inject water into the existing buried water supply pipeline from the Bland Creek Palaeochannel borefield;
- two tanks (i.e. balancing storage) with a combined capacity of approximately 100 kilolitres; and
- a paddle wheel (or flow meter) at the canal in order to meter the pumping/transfer rate.

Obtaining surface water from the Jemalong irrigation channels also required some modifications to the existing water supply infrastructure, including the construction and operation of a surface water intake structure, pumps and balancing storage adjacent to the Bore 4 pump station (Figure 9) and a pump station within ML 1535.

Saline Groundwater Supply Borefield within ML 1535

As described in Section 4.2.1 above, the saline groundwater supply borefield within ML 1535 forms part of the CGO water supply. The following section describes the construction and operation of the ML 1535 saline groundwater supply borefield, including measures designed to manage groundwater quality and quantity.

A review of mineral drilling records identified a prospective local saline alluvial aquifer located within ML 1535 to the east and south of the approved CGO open pit. Pump tests on this aquifer (Coffey Geotechnics, 2008) indicated that a borefield of approximately four bores could supply approximately 1 ML/day of saline water (i.e. EC of approximately 40,000 μS/cm) to the process plant. The results of tests conducted on two licensed test bores indicate that sustainable yields from these bores are in the order of 0.7 ML/day for a period of approximately 5 years.

It is expected that there is a high likelihood that this borefield could be developed using additional bores in ML 1535 to supply 1 ML/day for the life of the CGO. This expectation is based on (Barrick, 2009b):

- the yield results from the two tested bores in the saline alluvial aquifer;
- the number of other existing licensed test bores (i.e. nine) available for conversion to production bores;
- the results of bore yields from open pit dewatering bores; and
- historic hydrogeological investigations in ML 1535 which have confirmed the presence of saline groundwater in three other local aquifers as described in Coffey Geotechnics (2008).

The borefield would be operated during times when the borefield is not inundated by Lake Cowal.

Water accessed by the saline groundwater borefield within ML 1535 is licensed by WAL 36615 under the Water Sharing Plan for the Lachlan Unregulated and Alluvial Water Sources.

In accordance with Development Consent Condition 4.2(a), the water pipeline from the saline groundwater supply borefield to the CGO has been constructed in accordance with the requirements of DPI – Water (and in consultation with DPI-Fisheries), and laid in such a way so as not to impede the passage of fish or other animals, or interfere with flood behaviour or the passage of boats and vehicles.
A small area of the lakebed of Lake Cowal was required to be disturbed for the saline groundwater supply borefield and associated pipeline. The pipeline disturbance did not involve the removal of native trees, given that trees were absent from this area (FloraSearch, 2008). Further, the area had been previously cleared for livestock grazing and, in some areas, cropping (FloraSearch, 2008).

Operation of the borefield includes the following control and preventative measures:

- shut-down and removal of pumps during periods when the borefield is inundated by Lake Cowal;
- prominent signage at the well-heads to minimise the potential for accidental collision or damage;
- a pipeline laid on the ground surface (i.e. above ground level) in a V-drain for potential spill containment and a generator to power the pumps; and
- leak detection mechanisms including automatic shut-down capability (i.e. a pressure-based shut-down system).

In accordance with Development Consent Condition 4.2(a)(iii), an automatic shut down device has been installed so water pumping is immediately stopped in the event of any pipe rupture. The water supply will not be restarted until the rupture is located and repaired. Such a system will negate the risk of significant impact on lake surface water quality.

In the unlikely event of pipeline failure and leakage of saline water, the spill will be controlled, contained and cleaned-up in accordance with the spill response procedures described in the Hazardous Waste and Chemical Management Plan (HWCMP).

Eastern Saline Borefield

The eastern saline borefield is located approximately 10 km east of Lake Cowal’s eastern shoreline, and north-east of the Bland Creek Palaeochannel borefield (Figure 5).

Pump tests on this aquifer (Groundwater Consulting Services, 2010) indicate that two bores could supply approximately 1.5 ML/day of saline water (i.e. EC of approximately 12,000 µS/cm) for use in the process plant for approximately five years.

The borefield would operate in drier times and be rested in wetter times when the site water supply would make-up the supply from this source. Conveyance of the water from the eastern saline borefield would be via the Bland Creek Palaeochannel borefield water supply pipeline to the CGO.

Monitoring of groundwater abstraction and water levels for the eastern saline borefield will be undertaken to allow the future yield of the Cowra aquifer system to be assessed as part of Evolution’s ongoing water supply strategy.

Water accessed by the eastern saline borefield is licensed by WAL 36569 under the Water Sharing Plan for the Lachlan Unregulated and Alluvial Water Sources. The eastern saline borefield licenses have a zero ML licence allocation with an allowable temporary transfer of up to 750 ML/year per bore.

Groundwater quality monitoring for the eastern saline borefield will be undertaken on a quarterly basis in parallel with monitoring of groundwater quality in the Bland Creek Palaeochannel borefield.
Open Pit Dewatering Borefield

Groundwater inflow to the open pit is managed by dewatering bores and in pit sumps (which also collect incidental rainfall). A ring of 11 dewatering bores currently operate to control groundwater levels around the open pit. Horizontal drains in the pit wall accelerate depressurisation of the aquifer system by draining groundwater into the pit sumps.

Current groundwater inflow to the open pit is estimated to be approximately 146 ML/year, with approximately 10% of groundwater inflows from the alluvial groundwater system and 90% of groundwater inflows from the fractured rock groundwater system (Coffey Geotechnics, 2016).

The 10% of groundwater inflows from the alluvial groundwater system is licensed by WAL 36615 under the Water Sharing Plan for the Lachlan Unregulated and Alluvial Water Sources. The 90% of groundwater inflows from the fractured rock groundwater system is licensed by WAL 36617 under the Water Sharing Plan for the NSW Murray Darling Basin Fractured Rock Groundwater Sources 2011.

Groundwater inflow to the open pit is estimated to have generally decreased since 2008 as the adjacent aquifers surrounding the CGO have become depressurised (Coffey Geotechnics, 2016). No material increase in groundwater inflow to the open pit is estimated to have occurred during the 2010, 2012 or recent 2016 lake-fill event, based on monitored pit dewatering records (Coffey Geotechnics, 2016).

Groundwater inflow to the open pit continues to be less than the predictions in previous assessments for the CGO (i.e. for the EIS [North Limited, 1998a] and Cowal Gold Mine E42 Modification Modified Request [Barrick, 2009a]), based on monitored pit dewatering records. The groundwater dewatered is highly saline and is not suitable for use as potable water.

The management of the open pit dewatering borefield is described in Section 4.2.2.

Groundwater Licensing Summary

A summary of groundwater licensing requirements relevant to the CGO’s groundwater supply sources under the relevant Water Sharing Plans is provided in Table 5.

Comparison of Evolution’s licence entitlements against predicted annual licensing requirements (Table 5) indicates adequate licences are available to account for the potential take of water associated with the approved CGO within the alluvial aquifers.
Table 5
Groundwater Licensing Requirement Summary

<table>
<thead>
<tr>
<th>Water Sharing Plan/Relevant Legislation</th>
<th>Management Zone/Groundwater Source</th>
<th>Relevant Licence</th>
<th>Existing Licensed Volume¹ (ML/year)</th>
<th>Predicted Maximum Annual Licensing Requirements (ML/year)¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Sharing Plan for the Lachlan Unregulated and Alluvial Water Sources 2012</td>
<td>Upper Lachlan Alluvial Zone 7 Management Zone</td>
<td>Pit dewatering (including pit inflows) and saline bores in ML 1535 (WAL 36615)</td>
<td>366</td>
<td>280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bland Creek Palaeochannel Borefield (WAL 31864)</td>
<td>3,650</td>
<td>3,650</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eastern Saline Borefield (WAL 36569)</td>
<td>750² (per bore)</td>
<td>548</td>
</tr>
<tr>
<td>Water Sharing Plan for the NSW Murray Darling Basin Fractured Rock Groundwater Sources 2011</td>
<td>Lachlan Fold Belt Murray Darling Basin Groundwater Source</td>
<td>Pit dewatering (WAL 36617)</td>
<td>3,294</td>
<td>228</td>
</tr>
</tbody>
</table>

Source: Barrick (2013) and Coffey Geotechnics (2016).

¹ Assuming 1 ML per unit share.
² Eastern saline borefield licenses have zero ML licence allocation with allowable temporary transfer of up to 750 ML/year per bore.

Internal Runoff Collection

Surface water runoff within the CGO area will be collected by a series of bunds and collection ponds. Runoff from the waste emplacements, open pit area and other disturbed areas will be collected during rainfall events and transferred to the process water pond or other retention ponds for re-use in the process plant or to satisfy other operational requirements. This will also contribute to the management of surface water quality by minimising the potential for contamination of off-site waters.

The ESCMP describes integrated erosion, sediment and salinity structures, including collection drains and sediment basins that will be utilised to manage CGO area runoff in conjunction with the mine water management system shown on Figure 8. Surface water runoff collected by ESCMP structures will be transferred to the process water pond (D6). Runoff from the soil stockpile located in the north of ML 1535 would be released into local drainages ultimately reporting to Lake Cowal following settling of sediment in accordance with Landcom (2004) Volume 1 of Managing Urban Stormwater – Soils and Construction and DECC (2008) Managing Urban Stormwater – Soils and Construction Volume 2E Mines and Quarries guidelines.

The mine water management system includes nine containment storages which taken together provide for control of site water. The function of these contained water storages is summarised in Table 6.

Runoff that accumulates on the surface of the tailings storage facilities during rainfall events will be progressively dewatered to D6 for use in the process plant. Freeboard for the 1 in 1,000 year ARI 48 hour storm event across the tailings storage facilities will be maintained in the tailings storage facilities.

Contained water storages D5 and D6 have been lined (with a plastic liner, compacted clay or equivalent) to the satisfaction of the EPA.
Table 6
Summary of Contained Water Storages

<table>
<thead>
<tr>
<th>Storage Number</th>
<th>Catchment/Function</th>
<th>Approximate Storage Capacity (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 (Existing)</td>
<td>Runoff from northern perimeter of the northern waste rock emplacement. Collected water is pumped to D6.</td>
<td>57</td>
</tr>
<tr>
<td>D2 (Existing)</td>
<td>Runoff/seepage from ROM and low grade stockpile areas from the northern waste rock emplacement area, the batters of the northern tailings storage facility and other areas within the Internal Catchment Drainage system (ICDS). Collected water is pumped to D6 or D9.</td>
<td>195</td>
</tr>
<tr>
<td>D3 (Existing)</td>
<td>Runoff from perimeter catchment surrounding the open pit and the perimeter waste rock emplacement areas. Collected water is pumped to D6.</td>
<td>39</td>
</tr>
<tr>
<td>D4 (Existing)</td>
<td>Runoff from the southern perimeter of the southern waste rock emplacement. Collected water is pumped to D6 or D9.</td>
<td>69</td>
</tr>
<tr>
<td>D5 (Existing)</td>
<td>Process plant area drainage collection. Water is pumped to D6.</td>
<td>92*</td>
</tr>
<tr>
<td>D6 (Existing)</td>
<td>Process water supply storage. Main source of process plant make-up water requirements.</td>
<td>10</td>
</tr>
<tr>
<td>D8B (Existing)</td>
<td>Runoff from southern waste rock emplacement, the batters of the southern tailings storage facility and other areas within the ICDS (including ROM areas). Water is pumped to D9.</td>
<td>43</td>
</tr>
<tr>
<td>D9 (Existing)</td>
<td>Process water supply storage. Storage for raw water. Water is pumped to D6. Some water used for tailings storage facilities lift construction.</td>
<td>726</td>
</tr>
<tr>
<td>D10 (Approved but not yet constructed)</td>
<td>Process water supply storage. Storage for raw water. Water is pumped to D9.</td>
<td>1,637</td>
</tr>
</tbody>
</table>

Source: Hydro Engineering & Consulting (2016).
* Currently commissioned at 63.6 ML.

Site Water Balance

A revised site water balance for the approved CGO has been prepared by Hydro Engineering & Consulting (2016) as part of the Cowal Gold Operations Mine Life Modification Environmental Assessment (Evolution, 2016) and considered the proposed extension to the life of the CGO.

The model involved simulating the performance of the modified water management system under ‘dry’, ‘median’ and ‘wet’ conditions based on 127 years of daily rainfall and pan evaporation data (Hydro Engineering & Consulting, 2016).

A summary of the simulated water balance for the life of the approved CGO under the “dry”, “median” and “wet” climatic scenarios is shown in Table 7. It is expected that the majority of total water requirements for the approved CGO would continue to be supplied from internal water sources, with the remainder supplied from external water sources (Table 7).
Table 7
Simulated Water Balance for the Life of the Approved CGO

<table>
<thead>
<tr>
<th>Expected Water Demand/Supply</th>
<th>10th Percentile Rainfall Sequence (Dry)</th>
<th>Median Rainfall Sequence</th>
<th>90th Percentile Rainfall Sequence (Wet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ML/year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outflows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Expected Water Requirements</td>
<td>8,963</td>
<td>8,950</td>
<td>8,974</td>
</tr>
<tr>
<td>Inflows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Water Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catchment Runoff</td>
<td>837</td>
<td>1,084</td>
<td>1,285</td>
</tr>
<tr>
<td>Tailings water return</td>
<td>3,861</td>
<td>3,861</td>
<td>3,861</td>
</tr>
<tr>
<td>Open Pit Groundwater</td>
<td>199</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Subtotal – Internal Water Sources</td>
<td>4,897</td>
<td>5,144</td>
<td>5,345</td>
</tr>
<tr>
<td>External Water Sources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saline Groundwater Supply Bores within ML 1535</td>
<td>137</td>
<td>94</td>
<td>86</td>
</tr>
<tr>
<td>Eastern Saline Bores</td>
<td>522</td>
<td>516</td>
<td>507</td>
</tr>
<tr>
<td>Bland Creek Palaeochannel Borefield</td>
<td>1,998</td>
<td>1,917</td>
<td>1,871</td>
</tr>
<tr>
<td>Lachlan River Licensed Extraction</td>
<td>1,445</td>
<td>1,329</td>
<td>1,268</td>
</tr>
<tr>
<td>Subtotal – External Water Sources</td>
<td>4,102</td>
<td>3,856</td>
<td>3,732</td>
</tr>
<tr>
<td>Total Expected Water Supply</td>
<td>8,963</td>
<td>8,950</td>
<td>8,974</td>
</tr>
</tbody>
</table>

Source: Hydro Engineering & Consulting (2016).

Note: Discrepancies in totals due to rounding.

1 Includes water requirements/losses associated with ore process, evaporation, haul road dust suppression and tailings lift construction.
2 Modelled volume of water actually reaching the CGO – excludes irrigation channel losses.

Interaction with Lake Cowal

As part of the EIS, a model of Lake Cowal and its catchment was used to investigate the potential effects that the mine would have on the water balance dynamics of Lake Cowal, including changes to average water levels in the Lake and changes to the frequency and volume of spills from Lake Cowal to Nerang Cowal downstream. The water balance model provides a means of assessing how the water management system as a whole would perform under various conditions (Gilbert and Sutherland, 1997).

The CGO mine area is physically isolated from Lake Cowal by the lake isolation system (Section 4.1.2). The outer face of the isolation system extends approximately 1 km into Lake Cowal and forms a new lake foreshore.

As the lake isolation system (which was constructed during the construction phase of the CGO) would continue for the operations phase, the EIS predictions regarding changes to lake volume and the potential effects on runoff water quality remain the same (Gilbert & Associates, 2009).

No spills were predicted by Hydro Engineering & Consulting (2016) in the revised site water balance model for the approved CGO from either of the contained water storages (D1 and D4) that could spill to Lake Cowal in any of the 127 possible climate sequences modelled. This outcome is contingent upon pumped dewatering of these storages in between rainfall events (ibid.). Pump extraction rates of 100 litres per second (L/s) and 105 L/s for storages D1 and D4 were assumed respectively (ibid.).
4.2.2 Pit Dewatering

During CGO operations, water will accumulate within the open cut as a result of surface water runoff during wet weather and groundwater inflows from intersected aquifers (North Limited, 1998a).

Water that accumulates within the open cut will be managed, in consultation with DPI – Water, in accordance with a pit dewatering programme which is outlined in the following sections.

Surface Water Inflows

Significant surface water inflow is most likely to be the result of occasional heavy rainfall events. The catchment area draining to the open pit during operation will be restricted to the pit itself and a small perimeter area enclosed by an external bund. Water management structures have been installed to divert water from other areas outside this bund to site runoff collection ponds. The open pit design includes water management structures (face seepage collection drains) and in-pit sumps in the floor of the pit. The in-pit sumps will be sized to store runoff from a medium sized (1 in 10 year ARI) rainfall event. Pumps will be installed with sufficient capacity to remove the ponded water from the design event to the contained water storage D6 or D3 within 48 hours (Gilbert & Associates, 2008).

The contained water storage D6 will have capacity to store runoff from the 1 in 1,000 year ARI, 48 hour event above its normal operating level (Gilbert & Associates, 2008).

Groundwater Inflows

The open pit will ultimately comprise an oval shaped hole comprising a surface area of approximately 131 hectares and would have a maximum depth at approximately -331 m AHD (i.e. approximately 540 m below the natural surface level (Evolution, 2016).

No significant change in groundwater inflow is expected due to the *Cowal Gold Operations Mine Life Modification* (approved on 8 February 2017) (Coffey Geotechnics, 2016).

Over the operational life of the CGO, total groundwater inflow to the open pit at the CGO is predicted to comprise (Coffey Geotechnics, 2016):

- a maximum of approximately 228 ML/year from the fractured rock groundwater system; and
- a maximum of approximately 24 ML/year from the alluvial groundwater system.

It is predicted that the proportion of groundwater inflow from the fractured rock groundwater system would increase as the open pit deepens (Coffey Geotechnics, 2016).

No significant difference between groundwater inflow for the lake-fill and lake-dry scenarios was predicted (Coffey Geotechnics, 2016), indicating the continued hydraulic separation of the CGO open pit and Lake Cowal.

Maximum post-mining groundwater inflow is expected to reduce to approximately 46.3 ML/year, comprising approximately 44 ML/year from the fractured rock groundwater system and 2.3 ML/year from the alluvial groundwater system (Coffey Geotechnics, 2016).
Groundwater Quality

Assessment of baseline groundwater salinity levels undertaken for the EIS by Coffey Partners International (1997) reported that:

- The alluvial groundwater system had very high salinity in the range of 19,000 to 72,000 μS/cm within the open pit extent and 6,000 to 44,400 μS/cm beneath the tailings storage facilities area.
- The fractured rock groundwater system also had very high salinity in the range of 50,900 to 63,700 μS/cm.

Monitoring data indicates that, while open pit dewatering is causing a localised reduction in groundwater levels, no changes in groundwater chemistry appear to be associated with this drawdown (Coffey Geotechnics, 2016). Monitored groundwater pH levels and EC concentrations within ML 1535 are generally consistent with the background (i.e. pre-mining) monitored levels.

No additional impacts to groundwater quality in the aquifers surrounding the CGO are predicted due to groundwater inflow to the open pit or seepage from the tailings storage facilities (Coffey Geotechnics, 2016).

Dewatering Bores

An open pit dewatering programme is currently in operation at the CGO to manage surface water and groundwater inflows. Permanent licensed bores have been installed in a ring outside the open pit perimeter. The locations of individual bores have been targeted to coincide with structures/features (shear zones, fractured dykes and faults). Saline groundwater generated during open pit dewatering is pumped to the process plant for use in ore processing. A network of piezometers has also been installed to monitor draw-down levels during the life of the mine. In the event any pit dewatering bores are decommissioned and replaced due to expansion of the open pit, Evolution will consult with DPI – Water to confirm any licensing requirements.

4.2.3 Integrated Erosion, Sediment and Salinity Control System

The CGO integrated erosion, sediment and salinity control system is presented in the ESCMP. The ESCMP identifies the prevention of sediment-laden runoff from the mine site discharging into the lake as the primary objective of the erosion and sediment control system.

A summary of the integrated erosion, sediment and salinity control system for the construction phase of the CGO is presented in Section 4.1.4.

The integrated erosion, sediment and salinity control system measures described in Section 4.1.4 would continue to be implemented for the operations phase of the CGO. The additional erosion and sediment control system associated with the soil stockpile located in the north of ML 1535 will involve upslope diversion drains and/or bunds and a sediment basin to manage surface water runoff and provide erosion and sediment control. As described in Section 4.2, the sediment basin would be designed in accordance with Landcom (2004) Volume 1 of Managing Urban Stormwater – Soils and Construction and DECC (2008) Managing Urban Stormwater – Soils and Construction Volume 2E Mines and Quarries guidelines.

Soil disturbance and management measures associated with the saline groundwater supply borefield were implemented, in accordance with the ESCMP (Section 4.2.1).
4.2.4 Waste Emplacements

Mine waste recovered during the open cut mining operations has been placed in three waste emplacement areas comprising the northern, southern and perimeter waste emplacements (Figure 2). The northern and southern waste emplacements are integral with the perimeter waste emplacement which is a component of the permanent lake protection bund. The outside faces of the northern and southern waste emplacements form part of the perimeter catchment limits of the CGO.

The original natural surface contours underlying the northern waste emplacement sloped to the north and away from the open pit. The design objective was to facilitate containment of seepage from saline generating components in the waste rock within the mine site area. Construction works associated with the site included construction of a low permeability basal layer beneath the northern waste emplacement area - sloping inward toward the open pit. A conceptual cross-section of the northern waste emplacement is shown on Figure 11. The basal layer was intended to provide control over the direction of internal seepage such that it would emerge from the internal rather than the external toe of the waste emplacement area where it would report to contained water storage D2. Any runoff from the external face of the northern waste emplacement would report to the external contained water storage D1 which has been constructed below the external (north-eastern) toe of the northern waste emplacement area (Gilbert & Associates, 2008).

The southern waste emplacement was constructed over a low ridge line such that seepage would have naturally reported to both the southern and northern sides of the emplacement. A low permeability basal layer sloping to the north was incorporated into the pre-development construction works to facilitate drainage of seepage waters toward the open pit. The basal layer was intended to provide control over the direction of internal seepage such that it would emerge from the internal rather than the external toe of the waste emplacement area where it would report to contained water storage D8B.

Any runoff from the external face of the southern waste emplacement would report to the external contained water storage D4 which has been constructed below the external (south-eastern) toe of the southern waste emplacement area (Gilbert & Associates, 2008).

Based on the results of rehabilitation trials conducted to date, the outer batters of the waste emplacements will be rock armoured with primary waste rock mulch (Figure 11) to provide long-term slope stability, control surface water runoff downslope and reduce erosion potential. The approved rehabilitation concept/method will also include cross-ripping the rock mulch and topsoil along the contour of the slope to create ‘troughs and banks’ to minimise the potential for erosion downslope.

The perimeter waste emplacement area forms part of the permanent lake isolation bund system. It provides a continuous elevated landform linking the northern and southern waste emplacement areas.
Waste Rock

Natural Ground Surface

Removal of Topsoil During Pre-stripping Phase where Necessary (to Direct Drainage to the Open Pit)

Base Drainage Control Zone Constructed where Necessary (to Direct Drainage to the Open Pit)

Rehabilitation Cover System Including Rock Armour/Soil

308 m AHD (Approved Height)

INSET Refer to Figure 8b

DETAIL 1

Shallow Basin

Gypsum-treated Soil

C 308 m AHD (Approved Height)

C¹

Detail 1

Northern Waste Rock Emplacement

C

Not to Scale Source: Barrick (2014)

Refer to Figure 8b

Base Drainage Control Zone Consecrated where Necessary (to Direct Drainage to the Open Pit)

213 m AHD

C¹

Source: Barrick (2014)

FIGURE 11 Conceptual Embankment Section of Northern Waste Rock Emplacement

HAL-02-07 CGO MP 2017 WMP_109A

WASTE MANAGEMENT PLAN

W A T E R M A N A G E M E N T P L A N
4.2.5 Process Plant Area

The process plant area has been bunded and graded such that any surface runoff, accidental spills of processing water or other potentially hazardous liquids will report to contained water storage D5. Contained water storage D5 will contribute to the management of surface water quality in surrounding areas by minimising the potential for contamination of surrounding waters.

The quantity of water in the process plant area will be managed in the following manner:

- the storage water level in D5 will be kept as low as possible by regularly transferring accumulated water to the process water storage (D6) for use in the process plant; and
- the process plant contained storage (D5) will be provided with sufficient storage for containment of the 1 in 1,000 year ARI, 48 hour duration event (Gilbert and Sutherland, 1997). This is approximately equivalent to a total of 216 mm of rainfall over 48 hours (Gilbert & Associates, 2003).

4.2.6 Cyanide Management

The management of cyanide at the CGO will be in accordance with the Cyanide Management Plan (CMP). The CMP (includes a cyanide monitoring programme) has been prepared in accordance with Development Consent Condition 5.3(b) and in consultation with the then DTIRIS-DRE, NSW Office of Environment and Heritage, DPI - Water and EPA, and to the satisfaction of the DP&E, and will continue to be implemented during the operational phase of the CGO.

Development Consent Condition 5.3(a) establishes limits for the aqueous component of the tailings slurry (as monitored at the process plant via an automated sampler), such that cyanide levels do exceed 20 milligrams (mg) weak acid dissociable cyanide per litre (CNWAD/L) (90 percentile over six months) and 30 mg CNWAD/L (maximum permissible limit at any time). The CMP details how this will be achieved.

4.2.7 Tailings Management

As required by Development Consent Condition 5.2, the tailings storage facilities have been constructed to the requirements of the DRG, EPA and DSC and in consultation with DPI – Water. The floor of the tailings storage facilities has been constructed and compacted as required to a permeability acceptable to the DRG and EPA, in consultation with DPI – Water.

As described in Section 4, the tailings storage facilities are part of the site water management system. Tailings water is the primary source of process water (Section 4.2.1) and also has the potential to impact surface water and groundwater within the mine site.

The Up-catchment Diversion System (Section 4.1.1) and lake isolation system (Section 4.1.2) effectively isolate the mine site, including the tailings storage facilities, from Lake Cowal and the surrounding area.

The following section describes the management of the quantity and quality of tailings water.

Approximately 158 million tonnes of ore will be produced over the life of the CGO (Evolution, 2016). The approximate final heights of the northern and southern tailings storage facilities are 264 m AHD and 272 m AHD, respectively (ibid.).
Tailings material is deposited into the two tailings storage facilities as a slurry under sub-aerial conditions. Free water liberated during settling and runoff from incident rainfall accumulate in an internal decant pond area from where it is pumped out to dedicated contained water storage D6 for re-use in the processing plant. The tailings storage facilities have been designed to maintain a minimum freeboard in the tailings storage facilities sufficient to store at least the contingency 1 in 1,000 year ARI rainfall event at all times (Gilbert & Associates, 2009). This is approximately equivalent to a total of 216 mm of rainfall over 48 hours (Gilbert & Associates, 2003). The required free-board will be maintained during the CGO life as the storage fills with tailings via a series of embankment lifts (Gilbert and Sutherland, 1997).

The Up-catchment Diversion System will divert runoff from the catchment area upslope of the storages to drainage lines which flank both the northern and southern sides of the CGO (Figure 2). Prior to construction of the tailings storage facilities, temporary toe drains and containment bunds were constructed around the tailings storage facility embankments to collect runoff from the external batters and any accidental spills from the tailings reticulation lines (Gilbert and Sutherland, 1997).

Consistent with the rehabilitation cover system concept for the waste rock emplacement outer batters, the outer batters of the tailings storage facilities will be rock armoured with primary waste rock mulch.

Cyanide from the CGO process plant can arrive at the tailings storage facilities in three forms viz. as free cyanide, as a range of cyano-metal complexes or as thiocyanate. These forms are interchangeable depending on the chemical make-up of the liquor in the tailings storage facilities. The bulk of decay in the tailings storage facilities will happen through the process of volatilisation. Other significant decay paths include: association/disassociation of metal complexes; anaerobic biodegradation to relatively innocuous non-cyanide species and degradation of iron cyanide complexes by UV radiation to WAD and free cyanide species (North Limited, 1998a).

During the EIS, it was predicted that the CNWAD concentrations in the reclaim water when processing oxide ore would range from 5 to 10 mg/L and from 10 to 15 mg/L when processing primary ore (North Limited, 1998a). It was also predicted that within 2 to 3 months after discharge ceases the CNWAD complexes in the ponded decants (oxide and primary tailings) would decay to very low concentrations (Environmental Geochemistry International [EGi], 1997).

Actual concentrations of CNWAD in the ponded oxide tailings liquor during operations have been measured at an average of approximately 5.5 mg/L and measured at an average of approximately 4.4 mg/L in the ponded primary tailings liquor (i.e. the CNWAD concentrations in the ponded tailings water at the CGO are within the range predicted in the EIS). The rate of CN decay from the liquor entrained within the tailings and the ponded decant liquor for the CGO is not expected to differ from the EIS predictions for the CGO tailings storage facilities (Geo-Environmental Management Pty Ltd, 2008).

Tailings storage facility water management at the CGO would continue to involve maximising water re-use through the under-drainage pipe network, decant towers and water return pipeline to the contained water storage (D6).

Following tailings deposition, supernatant water drains to the central pond and decant towers. The decant tower is accessible via a causeway. An underdrainage pipe network has also been installed to facilitate drainage of the tailings mass. The bulk of the water from each tailings storage drains from the surface of the tailings and collects in the centre of each storage. This water, as well as underdrainage water, is reclaimed and used within the process plant. The decant system (including access causeway) is progressively raised during development of the tailings storage facilities (Barrick, 2008).

Monitoring of EC and pH in the decant of the active tailings storage facility would be undertaken on a weekly basis.
4.2.8 Sewage and Associated Waste Management

The management and treatment of sewage is addressed in the HWCMP.

In accordance with Development Consent Condition 5.6, a site sewage treatment facility has been installed. Treated sewage and sullage will continue to be disposed of to the satisfaction of Bland Shire Council (BSC) and the EPA and in accordance with the requirements of the NSW Department of Health.

4.3 MONITORING PROGRAMMES AS PROVIDED BY CONDITION 4.5

A Surface Water, Groundwater, Meteorological and Biological Monitoring Programme (SWGMBMP) has been prepared for the CGO (for all stages of the development) in accordance with Development Consent Condition 4.5(b). The following subsections provide a summary of the monitoring programmes required by Condition 4.5(b).

The objectives of the SWGMBMP are to:

a) fulfil the relevant development consent conditions;
b) provide a description of baseline water, meteorological and biological monitoring and therefore, information against which operational monitoring results can be compared;
c) establish a programme which contributes to the assessment of the effectiveness of environmental impact mitigation measures during the construction and operation phases of the CGO;
d) outline a process by which administering authorities and stakeholders can regularly assess and confirm the effectiveness of the management strategies; and
e) provide details of the surface water, groundwater, meteorological and biological monitoring programmes during the construction and operation phases of the CGO.

The information presented below and in the following sections has been taken from the SWGMBMP in order to address Development Consent Condition 4.4(a)(ii).

The results from the monitoring programmes presented in the SWGMBMP will be used to assist in the management of the quality and quantity of surface and groundwater within and around the mine site. This will be achieved through the implementation of the following review procedure for each of the monitoring programmes. It will be the responsibility of the Environment and Social Responsibility (ESR) Manager in consultation with the Mining Manager to implement the review procedure, as described below.
SWGMBMP Monitoring Data Review Procedure

Data Validation

All data will be validated to ensure that it has been obtained in accordance with the requirements of the SWGMBMP including, but not limited to:

- samples being taken by a suitably qualified and experienced staff or consultants to the satisfaction of DPI – Water and EPA and in the case of biological monitoring, DPI-Fisheries (Development Consent Condition 4.5(b));
- samples handled and transported, correct sampling equipment and container used in accordance with AS/NZS 5667.1:1998 Water quality - Sampling - Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples; and
- samples have been analysed by a National Association of Testing Authorities (NATA) accredited laboratory.

Where a comparison with baseline monitoring data is required, data validation will also involve a review of the relevant baseline data so as to detect any anomalous results.

Data Management

Validated data from each of the monitoring programmes detailed in the SWGMBMP will be entered onto a digital database by the ESR Manager (or delegate) as described in the SWGMBMP. This will render the data in a form suitable for analysis.

Data Analysis and Investigation

Data from each of the monitoring programmes detailed in the SWGMBMP will be analysed by suitably qualified and experienced staff or consultants. Data analysis will include, but not be limited to:

- **Surface Water Monitoring**: Surface water quality data will be compared to investigation trigger values described in Section 5.1. Where monitoring results indicate values in excess of the relevant trigger values, an investigation will be conducted to assess the need to implement management measures in addition to those described below (e.g. treatment of contaminated waters or alteration of upstream land management practices). The investigation will involve the consideration of the monitoring results in conjunction with mining operations being undertaken at the time, water quality results in nearby locations (including lake inflow sites), the prevailing and preceding meteorological conditions and changes to the land use/activities being undertaken in the contributing catchment. The investigation will also involve consideration of baseline data results collected to date. The scope and timeframe of the investigation will be developed in consultation with the relevant authorities. The results of the investigation will be presented to the relevant authorities and the Community Environmental Monitoring and Consultative Committee (CEMCC) within the agreed timeframe.

- **Groundwater Monitoring**: Groundwater volume, level and quality data will be compared to relevant baseline data, data collected since the commencement of operations and assessment data presented in the EIS and subsequent CGO environmental assessments. Where the data analysis indicates that an adverse impact is occurring to the efficiency of surrounding bores, an investigation will be undertaken to determine the need and type of ameliorative measures. The scope and timeframe of the investigation will be developed in consultation with the relevant authorities. The results of the investigation will be presented to the relevant authorities and the CEMCC within the agreed timeframe.
• **Biological Monitoring**: The SWGMBMP describes how the CGO’s potential impact on fish and aquatic invertebrates will be assessed. This includes assessment of impacts associated with change in Lake water quality, removal/modification of habitat and movement of dust away from active areas to Lake environs. In addition, the SWGMBMP describes how the assessment of the concentration of metals in sediment taken from lake monitoring sites will be assessed against the recommended trigger values and compared with results collected to date. If the sediment trigger values are exceeded, a preliminary assessment will be conducted. If the preliminary assessment shows that impacts may be potentially associated with the CGO, further investigation will be conducted in accordance with the methodology described in Section 3.5.5 of ANZECC and ARMCANZ (2000) to assess the need and type of ameliorative measures.

The scope and timeframe of the investigation will be developed in consultation with the relevant authorities (e.g. requirement for toxicity testing). The results of the investigation will be presented to the relevant authorities and the CEMCC within the agreed timeframe.

Ameliorative/Contingency Measures

Ameliorative/contingency measures will be developed in consultation with the relevant authorities based on the results of the above investigations. Additional monitoring programmes will also be implemented to measure the effectiveness of the ameliorative/contingency measures.

Investigations will subsequently be triggered where necessary and mitigation measures (measures to control/reduce/remove impacts) implemented where necessary. The type and detail of the investigation will be determined on a case by case basis in consultation with the CEMCC, Independent Monitoring Panel (IMP) and relevant regulators.

In addition to the above all data obtained from the surface water, groundwater and biological monitoring programme will be progressively reviewed and a trend analysis undertaken to aid in the detection of any gradual changes in water quality. The results of any such analysis will be reported in the Annual Review (Section 12.3).

4.3.1 **Meteorological Monitoring**

The results of the meteorological monitoring programme will be used in the on-going review and improvement of the site water management systems presented in Sections 4.1 and 4.2. In particular meteorological monitoring results such as evaporation and rainfall rates will be used in the validation of the site water balance, which is discussed in Section 4.2.1.

An automatic weather station has been installed at the CGO in accordance with Development Consent Condition 6.2. Monitoring parameters recorded by the station are listed in Table 8. Meteorological data is also available from several local BoM Stations, these are listed in Table 9.

Meteorological monitoring will continue for the duration of the CGO to provide site specific meteorological data for the on-going assessment of the site’s water balance and effectiveness of relevant impact mitigation strategies (such as erosion and sediment control – see ESCMP).
Table 8
Meteorological Monitoring Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall</td>
<td>mm</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>%</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>degrees</td>
</tr>
<tr>
<td>Wind Velocity</td>
<td>km/h</td>
</tr>
<tr>
<td>Barometric Pressure</td>
<td>hPa</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>W/m²</td>
</tr>
</tbody>
</table>

°C = degrees Celsius.
km/h = kilometres per hour.
hPa = hectopascals.
W/m² = watts per square metre.

Table 9
Bureau of Meteorology Station Locations

<table>
<thead>
<tr>
<th>BoM Station</th>
<th>Station Number</th>
<th>Approximate Location</th>
<th>Period of Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbes (Camp Street)</td>
<td>065016</td>
<td>55 km north-east</td>
<td>1873 - 1998</td>
</tr>
<tr>
<td>Forbes (Airport AWS)</td>
<td>065103</td>
<td>55 km north-east</td>
<td>1995 - Present</td>
</tr>
<tr>
<td>Quandialla Post Office</td>
<td>073032</td>
<td>55 km south-east</td>
<td>1925 – Present</td>
</tr>
<tr>
<td>Wyalong Post Office</td>
<td>073054</td>
<td>38 km south-west</td>
<td>1895 - Present</td>
</tr>
</tbody>
</table>

Source: BOM (2017a, 2017b, 2017c, 2017d)

4.3.2 Surface Water Monitoring

In accordance with Development Consent Condition 4.5(b), a surface water monitoring programme for the operations phase of the CGO has been developed. Surface water monitoring will be undertaken at specific areas within the ML area including the contained water storages, Up-catchment Diversion System, Internal Catchment Drainage System, open pit and tailings storage facilities (Figure 12).

A summary of the surface water monitoring programme is provided in Table 10 which outlines the monitoring locations, frequency of monitoring and surface water parameters that will be monitored. The surface water monitoring locations within the ML area are shown on Figure 12, with the regional surface water monitoring locations presented on Figure 13.
Table 10
Surface Water Monitoring Programme

<table>
<thead>
<tr>
<th>CGO Component</th>
<th>Site</th>
<th>Monitoring Frequency</th>
<th>Parameter/Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-catchment Diversion System</td>
<td>Up-catchment diversions north and south (UCD north and UCD south)</td>
<td>Monthly and following rainfall events of 20 mm or greater in a 24 hour period</td>
<td>Suspended Solids, EC, pH.</td>
</tr>
<tr>
<td>Internal Catchment Drainage System</td>
<td>Contained water storages D1 and D4</td>
<td>Monthly and following rainfall events of 20 mm or greater in a 24 hour period</td>
<td>Suspended Solids, EC, pH.</td>
</tr>
<tr>
<td></td>
<td>Contained water storages D2, D3, D5, D6, D8B, D9 and D10</td>
<td>Quarterly</td>
<td>Oil and grease, EC, pH, dissolved oxygen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total hardness, TSS and total dissolved solids (TDS).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ca, Mg, K, sodium, chloride, sulphate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dissolved As, Cd, Cu, Mo, Ni, Pb, Sb, Se, Zn.</td>
</tr>
<tr>
<td>Sediment control structures</td>
<td>Monthly and following rainfall events of 20 mm or greater in a 24 hour period</td>
<td>Structural integrity, Suspended Solids.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overflow event</td>
<td>Suspended Solids, pH, EC.</td>
<td></td>
</tr>
<tr>
<td>Pit/Void Water</td>
<td>Pit sumps</td>
<td>Monthly</td>
<td>Suspended Solids, EC, pH.</td>
</tr>
<tr>
<td>Tailings Storage Facilities</td>
<td>Decant</td>
<td>Weekly</td>
<td>EC, pH.</td>
</tr>
<tr>
<td>Lake Cowal Water Level</td>
<td>Lake Cowal gauge board</td>
<td>Monthly (when lake water is present)</td>
<td>Lake water level.</td>
</tr>
</tbody>
</table>

CGO Component: Cowal Gold Operations Component
FIGURE 13
Regional Surface Water and Groundwater Monitoring Locations

Table 10 (continued)

Surface Water Monitoring Programme

<table>
<thead>
<tr>
<th>CGO Component</th>
<th>Site</th>
<th>Monitoring Frequency</th>
<th>Parameter/Analyte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake Cowal Chemical Monitoring</td>
<td>P1, P3, L1, C1</td>
<td>Weekly and following rainfall events of 20 mm or greater in a 24 hour period (when lake water is present and the lake water level is at or above 204.5 m AHD)</td>
<td>Suspended Solids, EC, pH.</td>
</tr>
<tr>
<td></td>
<td>Lake Cowal transect sampling sites (refer to Figure 13):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lachlan Floodway transect – L1, L2, L5, L8, L9, L11 and L13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Irrigation Channel transect – I1, I3 and I4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Shore transect – E1, E3 and E5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bland Creek transect – B1, B2, B4 and B6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CGO transect – P1 to P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control sites transect – C1 to C3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monthly (when lake water is present and the lake water level is at or above 204.5 m AHD)</td>
<td>EC, pH, turbidity, dissolved oxygen, temperature, lake water level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly (when lake water is present and the lake water level is at or above 204.5 m AHD)</td>
<td>Suspended Solids, Alkalinity, cations and anions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Fe, Ca, Mg, K, sodium, chloride, sulphate, total phosphate, ortho phosphate, ammonium, nitrogen as nitrate and nitrite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total As, Cd, Cu, Mo, Ni, Pb, Sb, Se and Zn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dissolved As, Cd, Cu, Mo, Ni, Pb, Sb, Se and Zn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Cowal Inflow Sites</td>
<td>Lake inflow sites:</td>
<td>Monthly (when lake water is present and the lake water level is at or above 204.5 m AHD)</td>
<td>EC, pH, turbidity, dissolved oxygen, temperature.</td>
</tr>
<tr>
<td></td>
<td>Lachlan Floodway, Irrigation Channel, Bland Creek and Sandy Creek inflow sites (refer to Figure 13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarterly (when lake water is present and the lake water level is at or above 204.5 m AHD)</td>
<td>Suspended Solids, Alkalinity, cations, anions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Fe, Ca, Mg, K, sodium, chloride, sulphate, total phosphate, ortho phosphate, ammonium, nitrogen as nitrate and nitrite.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total As, Cd, Cu, Mo, Ni, Pb, Sb, Se and Zn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dissolved As, Cd, Cu, Mo, Ni, Pb, Sb, Se and Zn.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Waters</td>
<td>Lachlan River - Jemalong Weir Stream Gauge</td>
<td>Continuous (data to be obtained from DPI – Water every 6 months)</td>
<td>Flow.</td>
</tr>
</tbody>
</table>

Surface water monitoring will continue to be undertaken in Lake Cowal at monitoring sites along the six transects used during the baseline monitoring programme (described in the SWGMBMP) to enable evaluation of water quality data against records of baseline monitoring, in accordance with Development Consent Condition 4.4(a)(ii). A summary of the Lake Cowal baseline surface water quality results is provided in Section 5.1. Monitoring will be conducted at the monitoring locations as determined by the ESR Manager (or delegate) when the water level in Lake Cowal is at or above 204.5 m AHD.
Monitoring within the lake both close to and distant from the CGO will be undertaken. Monitoring at sites in the eastern section of the lake, some 3 to 6 km from the CGO area, would be expected to be less susceptible to the potential effects the mine may have (i.e. potential mine effects would be detectable in close proximity to the source [impact sites P1, P2 and P3] before they would be detectable at a distance [control sites C1, C2 and C3]) (Figure 13).

Monitoring data will be entered into the CGO monitoring database (Section 12.1) to assist reporting and enable trends to be easily identified. Data collected from the above monitoring will be used to validate the predicted performance of the site water management system and/or to determine the need for any augmentation of the system (Section 12.1). Surface water monitoring results will be interpreted and reported in the Annual Review (Section 12.3) which will be made available on Evolution’s website in accordance with Development Consent Condition 9.4(a)(vii).

The results of the surface water monitoring programme will be utilised in the on-going review and improvement of the site water management systems presented in Sections 4.1 and 4.2.

4.3.3 Groundwater Monitoring

In accordance with Development Consent Condition 4.5(b), a groundwater monitoring programme for the operations phase of the CGO has been developed. Groundwater monitoring will continue to be undertaken at monitoring sites used during the baseline monitoring programme (described in the SWGBMP) (where those sites are still operational) in accordance with Development Consent Condition 4.5(b)(ii) and additional monitoring sites specifically related to CGO potential groundwater impacts. DPI – Water and EPA were consulted regarding the location of the groundwater monitoring positions, in accordance with Development Consent Condition 4.5(a)(i).

The groundwater monitoring programme relates to groundwater monitoring in aquifers beneath the ML area and regionally within the Bland Creek Palaeochannel aquifer.

Groundwater monitoring commenced upon licences being obtained under Part 5 of the Water Act, 1912 (NSW). A list of the CGO’s groundwater monitoring bore licence numbers and water access licence numbers for the CGO’s production bores is provided in Appendix A.

The monitoring locations, frequency of monitoring and groundwater parameters to be monitored during the operations phase is provided in Table 11. The groundwater monitoring locations within ML 1535 are shown on Figure 12, with the regional groundwater monitoring locations shown on Figures 9 and 13.
Table 11
Groundwater Monitoring Programme

<table>
<thead>
<tr>
<th>CGO Component</th>
<th>Site(^1)</th>
<th>Monitoring Frequency</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML Area</td>
<td>Open pit area (PDB1A & PDB1B, PBD3A & PDB3B, and PDB5A & PDB5B).</td>
<td>Monthly.</td>
<td>Standing Water Level (SWL), EC, pH.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quarter.</td>
<td>Total hardness, Alkalinity, total dissolved solids (TDS).</td>
</tr>
<tr>
<td></td>
<td>Processing plant area (PP01 to PP06).</td>
<td>Monthly</td>
<td>SWL, EC, pH.</td>
</tr>
<tr>
<td>BCPC</td>
<td>BLPR1, BLPR2, BLPR3, BLPR4, BLPR5, BLPR6 and BLPR7.</td>
<td>Monthly</td>
<td>SWL, EC, pH.</td>
</tr>
<tr>
<td></td>
<td>Private registered bores 29094, 57974, 702230, 29574, 31341, 702306, 703460 and 30636.</td>
<td>As provided by private groundwater users</td>
<td>Bore water level.</td>
</tr>
</tbody>
</table>
Groundwater monitoring results will be interpreted and reported in the Annual Review (Section 12.3) which will be made available on Evolution’s website in accordance with Development Consent Condition 9.4(a)(vii). Monitoring data will be entered into the CGO monitoring database (Section 12.1) to assist reporting and enable trends to be easily identified. Results from the groundwater monitoring programme\(^5\) will determine the need for any augmentation of the water management system (Section 12.1). Groundwater level monitoring data collected at GW036553 will be compared to the trigger levels developed for management of the Bland Creek Palaeochannel to determine the need for implementation of any groundwater contingencies (Section 6.2.2).

The results of the groundwater monitoring programme will be utilised in the on-going review and improvement of the site water management systems presented in Sections 4.1 and 4.2.

4.3.4 Biological Monitoring

The Development Consent was modified in 2008 to remove the requirement to continue baseline biological monitoring and enabled the monitoring programme to adopt an approach that is consistent with the ANZECC and ARMCANZ water quality guidelines. As such, the biological monitoring programme was revised to:

- a) focus monitoring so it is relevant to the potential impact pathways from the CGO to Lake Cowal biology;
- b) adopt an approach to the assessment of potential impacts on Lake Cowal resulting from the CGO that is consistent with the ANZECC and ARMCANZ Water Quality Guidelines; and
- c) provide a more useful and effective biological monitoring programme.

\(^5\) Groundwater monitoring results or trends identified from analysis of the groundwater monitoring data that may indicate the need for augmentation of the system include changes in groundwater chemistry or groundwater levels.

<table>
<thead>
<tr>
<th>CGO Component</th>
<th>Site¹</th>
<th>Monitoring Frequency</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPI – Water piezometers 36551, 36552, 36553, 36523, 36524, 36528, 36594, 36595, 36596, 36597, 36609, 36610, 36611, 36613, 36700, and 90093.</td>
<td>Monthly</td>
<td>Bore water level.</td>
<td></td>
</tr>
<tr>
<td>Water Supply Pipeline from BCPC Borefield</td>
<td>Above ground sections of the pipeline.</td>
<td>Monthly</td>
<td>Visual inspection.</td>
</tr>
<tr>
<td>Saline Groundwater Supply Borefields</td>
<td>WB12 (saline borefield within ML 1535)</td>
<td>Monthly.</td>
<td>SWL, EC, pH.</td>
</tr>
<tr>
<td></td>
<td>PZ09, PZ10 & PZ11 (Eastern Saline Borefield)</td>
<td>Quarterly.</td>
<td>Total hardness, Alkalinity, TDS. Chloride, sulphate, Ca, Mg, K, Na Dissolved metals: Fe and Mn.</td>
</tr>
</tbody>
</table>

¹ Relevant bore licence and water access licence numbers are provided in Appendix A.
The biological monitoring programme will be used to assess the CGO’s potential impact on fish and aquatic invertebrates and will be undertaken by suitably qualified and experienced personnel to the satisfaction of DPI-Fisheries as required by Development Consent Condition 4.5(b). This will include the assessment of impacts associated with changes in Lake water quality, removal/modification of habitat and movement of dust away from active areas to Lake environs. In addition, the concentration of metals in sediment taken from lake monitoring points will be assessed against the recommended trigger values.

The biological monitoring programme is described in the SWGMBMP and summarised below.

To assess the CGO’s potential impact on fish and aquatic invertebrates, the following parameters will be monitored for each of the potential impact pathways:

Change in Lake Water Quality

Water quality of Lake Cowal will be monitored for a number of parameters along the Lake Cowal transects and lake inflow sites in accordance with the surface water monitoring programme (Section 4.3.2).

Removal/Modification of Habitat

The impact of removal/modification of habitat on fish fauna and aquatic invertebrates will be monitored in accordance with the surface water monitoring programme (described above) and the CWMP, as described below.

The New Lake Foreshore will be constructed and rehabilitated in accordance with the CGO’s CWMP (and RMP) and consistent with the rehabilitation objectives defined in Development Consent Condition 2.4(a). Revegetation concepts for the New Lake Foreshore have been designed to improve habitats for wildlife including fish fauna (Section 6.4.2 of the CWMP). Further to the rehabilitation of the New Lake Foreshore, the CWMP also includes wetland enhancement initiatives to improve existing habitats for fish fauna, namely the Compensatory Wetland and enhancement of wetland areas in the remaining areas of ML 1535 (refer Section 6.2 of the CWMP for detail).

A monitoring programme will be implemented to assess the success of the wetland rehabilitation (i.e. New Lake Foreshore) and enhancement measures (i.e. Compensatory Wetland and remaining areas of wetland in ML 1535) in improving wetland habitats for fish fauna.

Fish fauna surveys will be conducted within the Compensatory Wetland, New Lake Foreshore and remaining wetland areas within ML 1535, no more than annually, when the lake is full (i.e. at full storage level) to assess fish fauna usage of these areas. Monitoring will also be conducted to assess natural regeneration and the progress of revegetation in the wetland areas.

Movement of Dust Away from Active Areas to Lake Environs

Dust deposition levels surrounding the CGO and Lake Cowal will continue to be monitored in accordance with the Air Quality Management Plan (AQMP).

Lake Sediments

Analyses of sediment taken from lake monitoring points would be undertaken to assess the bio-availability of metals within the bed of Lake Cowal. The water quality monitoring programme and sediment monitoring programme will combine to provide data relevant to the bio-availability of metals.
The sediment monitoring will be relevant to potential surface water quality and dust deposition impacts, and will be undertaken when the lake water level is at or above 204.5 m AHD, where practicable. Biological monitoring results will be interpreted and reported in the Annual Review (Section 12.3) which will be made available on Evolution’s website in accordance with Development Consent Condition 9.4(a)(vii).

4.3.5 Cyanide Monitoring

As described in Section 4.2.6, a cyanide monitoring programme would continue to be implemented during the operations phase of the CGO.

4.3.6 Detection of Movement of Water Management Structures

Development Consent Condition 4.5(c) requires the preparation of a monitoring programme for the detection of any movement of the lake protection bund, water storage and tailings structures and pit/void walls during the life of the CGO, with particular emphasis on monitoring after any seismic events. The Monitoring Programme for the Detection of any Movement of Lake Protection Bund, Water Storage and Tailings Structures and Pit/Void Walls was prepared prior to the commencement of construction of the CGO in consultation with the then DLWC and Department of Mineral Resources and to the satisfaction of the Director-General of the then DIPNR. This programme will continue to be implemented during the operations and decommissioning phases of the CGO (Section 11).

6 Given the ephemeral nature of Lake Cowal, sediment monitoring will not be possible at all times. For example, sediment monitoring will not be possible when the water level within the lake does not permit access or sediment cores to be taken safely.
MEASURES TO PREVENT THE QUALITY OF WATER IN LAKE COWAL OR ANY SURFACE WATERS BEING DEGRADED

As stated in Section 4, the overall objective of the CGO water management system is to contain all potentially contaminated water (contained water) generated within the CGO area while diverting all other water around the perimeter of the site (North Limited, 1998a).

The long term compatibility assessment studies presented in the EIS (North Limited, 1998a) provide the following guidance on the relevant classification of waters at Lake Cowal.

Lake Cowal has high conservation value, of national and international significance.

The long term compatibility assessment studies (Resource Strategies, 1997) also identified a number of critical conservation values of Lake Cowal including those described below.

Hydrological Cycle

The hydrological cycle of Lake Cowal is characterised by seasonal fluctuations. The lake itself is considered ephemeral in nature and as such, the volume of water contained at any time is governed by rainfall patterns. Accordingly its hydrological regime introduces many variables which are critical to the aquatic ecosystem. The critical conservation values of Lake Cowal are closely linked to the quality and quantity of the water entering it. The hydrological cycle largely determines changes in lake volume and depth as well as any seasonal variance in water quality. The hydrological cycle generates changes in the productivity of the lake as well as corresponding changes in species diversity and abundance.

The hydrological cycle can produce variations in:

- numbers of waterbirds, fish and amphibian species;
- the area of vegetative cover and vegetation composition;
- the abundance of aquatic biota (both as a food source for waterbird species and as an integral part of the food chain);
- groundwater levels and associated changes in the salt balance;
- water quality as a function of flush effects; and
- inundation and exposure of agricultural land.

Additionally, as part of this hydrological cycle, refuge is provided for waterbird species during times of drought, as Lake Cowal is located within a predominantly semi-arid region. Land use changes also occur in response to the lake’s hydrological cycle. For example, in drier times, the lakebed is used for agricultural production.

Water Quality

Good water quality (generally to aquatic protection standard) has been maintained in Lake Cowal over time. This has occurred despite the surrounding agricultural land use. Changes in water quality can occur in response to the hydrological cycle although no accumulation of extractable salt has been observed as a result of seasonal filling and drying cycles. Natural variability in water quality can have direct and indirect impacts on components of the lake ecosystem. For example, the composition of flora and fauna at any one time can reflect the influence of current or recent changes in water quality.
The standard of water quality is considered to contribute significantly to the conservation value of the lake, as it enables the survival of an array of biota including benthos, zooplankton, crustaceans, bivalves, fish and waterbirds, all of which play key roles in the food chain. The survival and health of vegetation associated with the lake also depends largely on water quality. Species such as Lignum and River Red Gum are important examples of riparian plant species which provide habitat for a number of fauna species, particularly waterbirds. Changes in the composition of vegetation associated with the lake can alter fauna species composition. For example, a change in water quality which affects the survival of Lignum (which in turn can be replaced with an alternate species) may result in a reduced diversity of waterbirds which rely on Lignum areas at certain stages throughout their life cycles.

Ecosystem – Wetland Habitat

The conservation value of Lake Cowal as a wetland habitat is determined by a number of factors including:

- the diversity and size of suitable waterbird habitats (i.e. habitat resources suitable for roosting, breeding, foraging);
- the diversity and abundance of flora and fauna species (including common and endangered or vulnerable species) known to utilise the Lake environs;
- the geographical location of the Lake within a predominantly semi-arid environment;
- the ephemeral nature of the Lake (i.e. hydrological cycle);
- the significance of the habitat in a local and regional sense (primarily a function of land use practices in the surrounding areas); and
- the standard of water quality.

Lake Cowal is widely accepted as having major regional, national and international ecological and conservation significance as a wetland system used by many species of avifauna. A number of significant migratory (Environment Protection and Biodiversity and Conservation Act, 1999 (EPBC Act)/Chinese Australian Migratory Bird Agreement (CAMBA)/Japanese and Australian Migratory Bird Agreement (JAMBA) listings) and threatened waterbirds have been recorded at Lake Cowal. As such, it is listed on the Directory of Important Wetlands in Australia (Environment Australia, 2001).

The influences on the populations of waterbirds in the region of Lake Cowal are as diverse as those that drive the system. The importance of the Lake Cowal System to waterbird populations is exemplified by:

- providing refuge in times of drought with good water quality and an adequate food source for waterbirds;
- the diversity of habitat within a complete wetland ecosystem; and
- the physical size of the system which provides habitation for large numbers of waterbirds at any one time.

All these factors are integrated and as such, no one factor may be considered more important than another when considering its conservation value as a waterbird habitat.
5.1 PRE-CONSTRUCTION ANZECC WATER QUALITY CLASSIFICATION

The ANZECC and ARMCANZ (2000) guidelines arise from a revision of the ANZECC (1992) guidelines. Chapter 1 of the ANZECC and ARMCANZ (2000) guidelines states that the guidelines are intended to:

provide government, industry, consultants, and community groups with a sound set of tools that will enable the assessment and management of ambient water quality in a wide range of water resource types, and according to designated environmental values. They are the recommended limits to acceptable change in water quality that will continue to protect the associated environmental values. They are not mandatory and have no formal legal status (eg. they are not National Environmental Standards as provided for in Section 43 of the New Zealand Resource Management Act 1991). They also do not signify threshold levels of pollution since there is no certainty that significant impacts will occur above these recommended limits, as might be required for prosecution in a court of law. Instead, the guidelines provide certainty that there will be no significant impact on water resource values if the guidelines are achieved.

The ANZECC and ARMCANZ (2000) guidelines will be used to assist in the management of waters within Lake Cowal and surrounding surface waters. The application of these guidelines to the CGO is summarised below.

A range of environmental values are recognised by the ANZECC and ARMCANZ (2000) guidelines, including:

- aquatic ecosystems;
- primary industries; and
- drinking water.

The Long Term Compatibility Assessment Studies presented in the EIS (North Limited, 1998a) described Lake Cowal as being of high conservation value. The aquatic ecosystems environmental value is therefore considered to apply to Lake Cowal. Consequently, the pre-construction water quality classification of water within the lake was assessed to be that of “aquatic protection standard” (North Limited, 1998a) under the ANZECC (1992) guidelines.

Chapter 3 of the ANZECC and ARMCANZ (2000) guidelines specifies biological, water and sediment quality monitoring guidelines for protecting the range of aquatic ecosystems, from freshwater to marine.

The ANZECC and ARMCANZ (2000) guidelines recognise three ecosystem conditions:

1. High conservation/ecological value systems.
2. Slightly to moderately disturbed systems.
3. Highly disturbed systems.

The long term compatibility assessment classification of Lake Cowal as being of high conservation value and the identification of the Lake’s hydrological cycle, water quality and ecosystem (wetland habitat) as critical conservation values suggests that Lake Cowal should be classified as a high conservation/ecological value system.

This classification was supported by the then DLWC who have advised (pers. comm., 31 July 2003) that the pre-construction classification (ecosystem condition) of “High conservation/ecological value” would apply to the Lake and surface waters reporting to it. This is described in ANZECC and ARMCANZ (2000) as follows:
High conservation/ecological value systems — effectively unmodified or other highly-valued ecosystems, typically (but not always) occurring in national parks, conservation reserves or in remote and/or inaccessible locations. While there are no aquatic ecosystems in Australia and New Zealand that are entirely without some human influence, the ecological integrity of high conservation/ecological value systems is regarded as intact.

The classification of Lake Cowal as being of high conservation/ecological value means that the default trigger values for physical and chemical stressors and toxicants corresponds to the most conservative trigger levels, and hence the highest level of protection.

The then DLWC advised (pers. comm., 31 July 2003) that appropriate water quality trigger values for toxicants within freshwater aquatic ecosystems of high conservation/ecological value are the 99% protection level triggers provided in Chapter 3 of ANZECC and ARMCANZ (2000) (Appendix B).

The default high conservation/ecological value protection level triggers (including the 99% protection level for toxicants) provided in Chapter 3 of ANZECC and ARMCANZ (2000) (Appendix B) will be used to trigger surface water investigations, as described in Section 12, until such time as CGO specific triggers (based on lake water quality monitoring results across a range of storage and seasonal conditions) are developed in accordance with the procedures presented in ANZECC and ARMCANZ (2000) and in consultation with the relevant authorities.

A summary of Lake Cowal baseline surface water quality results is provided in Table 12, including a comparison with the ANZECC and ARMCANZ (2000) guideline values.

Table 12
Summary of Lake Cowal Baseline Water Quality

<table>
<thead>
<tr>
<th>Parameter^a</th>
<th>Aquatic Ecosystems^a^-^b</th>
<th>Livestock Watering^a</th>
<th>Lake Cowal Baseline Water Quality (1991 - 1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.5 to 8.0 for freshwater lakes</td>
<td>No trigger values given</td>
<td>8.27 – 8.67</td>
</tr>
<tr>
<td>EC/TDS</td>
<td>EC triggers for slightly disturbed ecosystems – lakes 20 – 30 μS/cm(^1)</td>
<td>TDS triggers 4,000 mg/L beef cattle, 5,000 mg/L sheep</td>
<td>EC 222 – 1557 μS/cm</td>
</tr>
<tr>
<td>NTU/SS (mg/L)</td>
<td>Turbidity triggers for slightly disturbed ecosystems – lakes 1 – 20 NTU(^2)</td>
<td>No trigger values given</td>
<td>22 – 224 mg/L</td>
</tr>
<tr>
<td>As (mg/L) (total)</td>
<td>0.008</td>
<td>0.5</td>
<td>0.0026(^3)</td>
</tr>
<tr>
<td>Cd (mg/L) (total)</td>
<td>0.0006</td>
<td>0.01</td>
<td>0.000055(^3)</td>
</tr>
<tr>
<td>Cu (mg/L) (total)</td>
<td>0.001</td>
<td>1.0 cattle, 0.4 sheep</td>
<td>0.006(^3)</td>
</tr>
<tr>
<td>Hg (mg/L) (total)</td>
<td>0.00006</td>
<td>0.002</td>
<td>>50% of samples less than Method of Detection Limit</td>
</tr>
<tr>
<td>Pb (mg/L) (total)</td>
<td>0.001</td>
<td>0.1</td>
<td>0.0029(^3)</td>
</tr>
<tr>
<td>Zn (mg/L) (total)</td>
<td>0.0024</td>
<td>20.0</td>
<td>0.012(^3)</td>
</tr>
</tbody>
</table>

After: North Limited (1998a)

^a Guideline values in accordance with ANZECC and ARMCANZ (2000).

^b 99% protection level trigger values for toxicants.

\(^1\) ANZECC and ARMCANZ (2000) notes that conductivity in lakes is generally low, but will vary depending upon catchment geology.

\(^2\) ANZECC and ARMCANZ (2000) notes that lakes in catchments with highly dispersible soils will have high turbidity.

\(^3\) Average value.
As described in Section 4.3, a detailed surface water quality monitoring programme has been developed for the CGO. Where monitoring results indicate values in excess of the ANZECC and ARMCANZ (2000) default 99% protection level triggers, an investigation will be conducted to assess the need to implement management measures in addition to those described in Section 5.2. As described in Section 4.3 the review procedure will involve validation of data, management of data, analysis and investigation, and where necessary development of ameliorative measures. Ameliorative measures will be developed in consultation with the relevant authorities based on the results of the investigative process.

The investigation will involve the consideration of the monitoring results in conjunction with site activities being undertaken at the time, water quality results in nearby locations, the prevailing and preceding meteorological conditions and changes to the land use/activities being undertaken in the contributing catchment. The investigation will also involve consideration of baseline data. The scope and timeframe of the investigation will be developed in consultation with the relevant authorities. The results of the investigations will be presented to the relevant regulator and the IMP and CEMCC within the agreed timeframe.

5.2 MEASURES TO PREVENT THE DEGRADATION OF THE QUALITY OF WATER IN LAKE COWAL

As described in Section 4, management strategies for the construction and operation phases involve the following principles (North Limited, 1998a):

1. Minimising disturbance areas.
2. Containment of potentially contaminated water.
3. Recycling of contained water.
4. Progressive stabilisation and revegetation of disturbed areas.

These principles and the water management measures presented below have been developed with regard to the goals of the JLMWP (Section 10.1), in particular:

- To minimise the adverse effects of local agricultural practices on soil and water quality;
- To minimise adverse downstream effects of local agricultural practices.

5.2.1 Construction

The water management measures that were adopted to prevent the degradation of waters within Lake Cowal during CGO construction, as required by Development Consent Condition 4.4(a)(ii), are described in Section 4.1.

Potential water quality impacts arising from dust generated by CGO construction and operation activities were also considered in the EIS (North Limited, 1998a):

The baseline water quality monitoring programme has demonstrated variable but significant levels of total suspended solids in lake waters (24 mg/L to 224 mg/L) depending on factors such as lake volume, rainfall patterns and local catchment runoff, wind velocity and wave effects, etc. Potential increases in total suspended solids in lake waters as a result of mine-generated dust outfall have been assessed utilising dust deposition predictions in Appendix I and assuming conservatively that mine-generated dust would preferentially concentrate near the lake protection bund and not mix with lake waters in general. Results indicate that the effect of mine-generated dust on the level of total suspended solids typically found in lake waters is negligible and would not be measurable in the context of the natural variation observed in baseline studies.
Potential increases in lake water metal concentrations due to mine-generated dust outfall are also expected to be negligible (North Limited, 1998a). Dust management and monitoring measures to minimise the potential for dust related impacts are presented in the AQMP in accordance with Development Consent Conditions 6.1(b) and (c).

Soil and waste rock characterisation programmes have identified materials to be disturbed during the construction phase that have the potential to generate salinity (North Limited, 1998a). Accordingly, the water management strategy incorporates design elements to contain surface runoff or seepage likely to have increased salt concentrations. As described in Section 4.1.2, the materials used to construct the temporary isolation bund and lake protection bund were of low salinity in order to mitigate potential salinity increases in the lake. A layer of primary waste rock mulch (or rock armour) will be used to stabilise the external batters of the waste emplacements, tailings storage facilities and lake protection bund to assist in controlling surface water runoff and reduce erosion potential. The water management strategy for the emplacements involves minimising runoff and directing any runoff from disturbed areas or seepage towards the open pit thereby minimising the potential for increased salinity in the lake.

The potential for shallow seepage occurring from the lake to the open pit will be overcome by the construction of the lake protection bund. As described in Section 4.1.2, the bund was constructed as a low permeability embankment and to meet specific engineering criteria for compaction to ensure the required low permeability barrier is in place. In addition, soils within the footprint of the bund were sub-excavated and replaced with compacted fill in order to restrict shallow migration under the embankment. Deep water loss, if any, from Lake Cowal to the underlying aquifer and thence to the final void will be negligible and impossible to measure (North Limited, 1998a).

Construction and operation of the Bland Creek Palaeochannel borefield and water supply pipeline is described in Section 4.2.1.

5.2.2 Operation

The water management measures to be adopted to prevent the degradation of waters within Lake Cowal during CGO operations are described in Section 5.2.

These measures include erosion, sediment and salinity control measures (Section 4.1.4) and monitoring programmes (Section 4.3).

Operations will be carried out in a manner that does not cause or aggravate air pollution, water pollution (including sedimentation) or soil contamination or erosion, unless otherwise authorised by a relevant approval, and in accordance with an approved MOP (Condition 14 of the Conditions of Authority).

5.3 MEASURES TO PREVENT THE DEGRADATION OF THE QUALITY OF WATER IN ANY SURFACE WATERS

The construction phase water management measures that were adopted and continue to be adopted for the operations phase to prevent the degradation of waters within Lake Cowal (Sections 5.2.1 and 5.2.2) will also be effective in preventing the degradation of surface waters outside the Internal Catchment Drainage System.
These measures include erosion, sediment and salinity control measures that are described in the ESCMP and are applicable to any CGO-related surface disturbance.

Operations will be carried out in a manner that does not cause or aggravate air pollution, water pollution (including sedimentation) or soil contamination or erosion, unless otherwise authorised by a relevant approval, and in accordance with an approved MOP (Condition 14 of the Conditions of Authority).
6 POSSIBLE ADVERSE EFFECTS ON WATER SUPPLY SOURCES

6.1 SURFACE WATER

Lake Cowal

As stated in Section 4, the overall objective of the CGO water management system is to contain all potentially contaminated water (contained water) generated within the CGO area while diverting all other water around the perimeter of the site (North Limited, 1998a).

As described in Section 4, a comprehensive water management system has been developed for the CGO. It is based on the permanent isolation of surface waters and groundwater on the mine site from Lake Cowal (Gilbert and Sutherland, 1997). This is achieved by an Up-catchment Diversion System (Section 4.1.1), to route runoff from areas unaffected by mining around the perimeter of the site and an Internal Catchment Drainage System (Section 4.1.3) and integrated erosion and sediment control system (Section 4.2.3), which will capture all site runoff and seepage for re-use in the process plant and in the longer term isolation in the final void (Gilbert and Sutherland, 1997).

The CGO is unlikely to have any measurable effect on the water balance of Lake Cowal (North Limited, 1998a; Gilbert & Associates, 2009). No spills from contained water storages have occurred to date or were predicted for the revised site water balance for the approved CGO including for contained water storages D1 and D4, which capture runoff from the outer batters of the northern and southern waste rock emplacements (Hydro Engineering & Consulting, 2016). The CGO will not directly use water from the lake for water supply or any other purposes. Rainfall runoff intercepted by the Internal Catchment Drainage System reduces (to a very small degree) the contributing catchment area of Lake Cowal (North Limited, 1998a; Gilbert & Associates, 2009).

As described in Section 3.1, a review of available surface water quality monitoring data was undertaken by Hydro Engineering & Consulting (2016) and compared to the (pre-mining) baseline data. The monitoring data review indicated that there is no evidence the existing CGO has resulted in changes to water quality in Lake Cowal (Hydro Engineering & Consulting, 2016).

Lachlan River Water Entitlements

Water from the Lachlan River would continue to be accessed for the CGO by purchasing temporary water available from the regulated Lachlan River trading market.

The predicted average water requirement from the Lachlan River under a 10th percentile (dry) rainfall sequence is 1,445 ML over the life of the approved CGO (Table 7) (Hydro Engineering & Consulting, 2016), however, volumes to be purchased would vary annually in accordance with the performance of the Bland Creek Palaeochannel, availability of water within the Lachlan River and availability of supply from the contained water storages within the ML.

DPI – Water trading records show that volumes between 4,000 ML and 274,000 ML of temporary water have been traded annually since 2004 (Hydro Engineering & Consulting, 2016). Throughout the operating history of the CGO, the Lachlan River regulated source has proven to be a reliable supply of temporary water (Hydro Engineering & Consulting, 2016).

The CGO therefore will not affect any licensed surface water users.
6.2 GROUNDWATER

6.2.1 Surrounding Landholders

Predicted Groundwater Drawdown due to Open Pit Dewatering

Within ML 1535, monitoring data shows some drawdown in the Cowra Formation due to groundwater inflow to the CGO open pit (Coffey Geotechnics, 2016). The monitoring data indicates that this drawdown is localised, and is considered to have not significantly affected groundwater levels in the Cowra Formation or Lachlan Formation outside of ML 1535 (Coffey Geotechnics, 2016).

The maximum predicted groundwater drawdown contours for the approved CGO in the alluvial and fractured rock groundwater systems are shown on Figure 14, along with drawdown contours for the existing CGO.

As shown on Figure 14, the change in groundwater drawdown associated with the approved CGO would be generally limited to ML 1535.

There are no other known users of the saline aquifers surrounding ML 1535 (i.e. other than Evolution). Given this, and given that potential groundwater impacts are predicted to be generally contained within ML 1535, no impacts to other groundwater users surrounding the CGO are predicted.

Hydraulic Relationship between Lake Cowal and Groundwater Systems

Previous studies indicate that Lake Cowal is hydraulically separated from the underlying aquifers, due to the very low permeability of the clay pan deposits that form the lake bed (Evolution, 2016). Based on this, it was predicted there would be very low potential for significant quantities of water to infiltrate from Lake Cowal to the underlying aquifers (i.e. associated with the Cowra Formation) (Evolution, 2016).

Monitoring data collected since the 2010 and 2012 lake-fill events indicates that no increase in groundwater inflow to the open pit has occurred and therefore supports the predictions of previous assessments regarding the hydraulic separation of Lake Cowal from the underlying aquifers (Coffey Geotechnics, 2016). Further, monitoring data indicates that inflow to the open pit has generally been lower during lake-fill conditions compared with when the lake was dry (Coffey Geotechnics, 2016).

Potential Impacts to Lake Cowal

Existing monitoring data indicates that groundwater inflow to the CGO open pit has not changed significantly during lake-fill conditions due to the hydraulic separation of the open pit and Lake Cowal.

While the approved CGO would increase the area and depth of the open pit, the impermeable clay layers that act to isolate Lake Cowal from the underlying aquifers would remain.

Coffey Geotechnics (2016) concludes that the total impact to Lake Cowal associated with open pit dewatering at the approved CGO would be negligible.

Groundwater Users

Evolution is the only known user of the saline alluvial aquifers that surround the CGO mining operations.
In the region, there is reliance upon groundwater bores as a source of water for agricultural enterprises and other uses. The majority of the privately-owned pumping bores in the area are within the Lachlan Formation with a small number in the Cowra Formation (Coffey Geotechnics, 2016). No privately-owned bores have been identified in the fractured rock groundwater system surrounding the CGO (Coffey Geotechnics, 2016).

6.2.2 Landholders near the Bland Creek Palaeochannel Borefield and Eastern Saline Borefield

Predicted Groundwater Drawdown due to Continued Use of the Bland Creek Palaeochannel Borefield and Eastern Saline Borefield

Groundwater levels in the Lachlan Formation (i.e. Bland Creek Palaeochannel) have lowered over the last decade, due to a rise in groundwater use by irrigators during drought conditions that occurred for most of the last decade (Coffey Geotechnics, 2013). Approved use of the Bland Creek Palaeochannel Borefield by Evolution has also contributed to this drawdown (Coffey Geotechnics, 2013).

The approved CGO will involve the continued use of the Bland Creek Palaeochannel Borefield and Eastern Saline Borefield in accordance with existing daily and annual extraction limits.

In addition, there will be no change to the existing Groundwater Contingency Strategy (i.e. trigger levels and contingency measures for the management of groundwater use in the Bland Creek Palaeochannel) (refer below).

Coffey Geotechnics (2016) considered the potential cumulative drawdown effects associated with the continued use of the Bland Creek Palaeochannel Borefield and Eastern Saline Borefield for the approved CGO and the continued extraction of groundwater by other users (e.g. irrigators).

It is estimated that a yield of approximately 5.1 ML/day from the Bland Creek Palaeochannel could be sustained for the life of the approved CGO such that groundwater levels do not fall below relevant trigger levels at Bores GW036553, GW036597 and GW036611 (Coffey Geotechnics, 2016) (Figure 15). This includes a yield of 1.5 ML/day from the Eastern Saline Borefield, and the continued extraction of groundwater by other users based on historic rates (Coffey Geotechnics, 2016).

To date, the effect of the Groundwater Contingency Strategy is that pumping from the Bland Creek Palaeochannel Borefield ceases when required to meet the trigger levels as shown on Figure 15.

As there be will no change to the existing Groundwater Contingency Strategy (i.e. agreed trigger levels) for the ongoing management of groundwater use in the Bland Creek Palaeochannel, and no change to existing daily and annual extraction limits, no additional impacts to other groundwater users are predicted due to the continued use of the Bland Creek Palaeochannel Borefield during the life of the approved CGO (Coffey Geotechnics, 2016).

Mitigation Measures

The priority in which the CGO water supply will be drawn from the various sources is described in Section 4.2.1. Groundwater from the Bland Creek Palaeochannel would be used where make-up water from all on-site sources (e.g. tailings storage facilities, pit dewatering and reuse of site runoff captured in the various site collection storages) is inadequate (Evolution, 2016). Supply from this source would also continue to be alternated with the Lachlan River source, to manage groundwater levels and provide flexibility with respect to extraction rates and supply sources (Evolution, 2016).
FIGURE 15
Predicted Watertable Drawdown with the Bland Creek Palaeochannel Borefield pumping at 7.2ML/day during the Approved CSG Mine Life

Source: Coffey Geotechnics (2016)
Evolution has maintained a very strong community consultation programme in relation to groundwater use from the Bland Creek Palaeochannel and meets regularly with a community group representing both irrigators and stock/domestic groundwater users.

In order to monitor important background and predicted future water level draw-downs, monitoring piezometers have been installed. The number and location of piezometers is presented in the SWGMBMP. In the event that disruption to the efficiency of the closest registered stock and irrigation bores occurs, as indicated by monitoring, ameliorative measures will be implemented (North Limited, 1998a).

Ameliorative measures would be developed in accordance with the review procedure presented in Section 4.3, which involves validation and management of data followed by a process of analysis and investigation. In relation to groundwater monitoring and potential impacts on groundwater users in the vicinity of the Bland Creek Palaeochannel, the review procedure provides:

- **Groundwater Monitoring:** Groundwater volume, level and quality data will be compared to relevant baseline data, data collected since the commencement of operations and assessment presented in the EIS. Where the data analysis indicates that an adverse impact is occurring to the efficiency of surrounding bores an investigation will be undertaken to determine the need and type of ameliorative measures. The scope and timeframe of the investigation will be developed in consultation with the relevant authorities. The results of the investigation will be presented to the relevant authorities and the CEMCC within the agreed timeframe.

Ameliorative measures such as bore reconditioning, pump lowering and/or refitting would be implemented in consultation with DPI – Water and affected registered bore owners. The lowering of the pump would be designed to maintain the pressure head available to the pump following the lowering of the water table. This may require deepening of existing bores or construction of new bores.

Groundwater Contingency Strategy

As described in Section 4.2.1, groundwater levels in the Bland Creek Palaeochannel are managed in accordance with the existing Groundwater Contingency Strategy, which involves the monitoring of groundwater levels, and the implementation of response measures should groundwater levels reach trigger levels developed in consultation with DPI – Water and other groundwater users.

The trigger levels are as follows:

- Bore GW036553 (Figure 9) (Bland Creek Palaeochannel Borefield area) – trigger levels of 137.5 and 134 m AHD.
- Bore GW036597 (Figure 9) (Billabong area) – trigger level 145.8 m AHD.
- Bore GW036611 (Figure 9) (Maslin area) – trigger level 143.7 m AHD.

Groundwater levels at Bore GW036553 (Figure 9) are monitored on a continuous basis by DPI – Water.

The trigger levels for these bores were set by the then Department of Natural Resources at the request, and on behalf, of the Bland Creek Palaeochannel Water Users Group.

The monitoring data for GW036553 is monitored via the website http://realtimedata.water.nsw.gov.au/water.stm with the data downloaded at least weekly (or daily should levels be trending close to the trigger levels) by the CGO’s Processing Manager.
Investigation and mitigation contingency measures have been developed should groundwater levels reach either 137.5 m AHD (trigger for investigation) or 134 m AHD (trigger for mitigation) in the monitoring bore closest to Evolution's Bland Creek Palaeochannel Borefield (i.e. GW036553).

Contingency Measures at RL 137.5 m AHD

In the event that the groundwater level in GW036553 is below RL 137.5 m AHD, one or more of the following contingency measures will be implemented in consultation with DPI – Water:

- investigate the groundwater level in the Trigalana bore (GW702286) (Figure 9) or any other impacted stock and domestic bores;
- determine the pump setting in relevant stock and domestic bores;
- determine the drawdown rate in GW702286 and other impacted stock and domestic bores;
- develop an impact mitigation plan for impacted stock and domestic bores; and/or
- set up an alternative water supply for the owner of GW702286 and other owners of stock and domestic bores, if necessary.

Contingency Measures at RL 134 m AHD

In the event that the groundwater level in GW036553 is below RL 134 m AHD, one or both of the following contingency measures will be implemented in consultation with DPI – Water:

- alter the CGO’s pumping regime to maintain the water level in the impacted stock and domestic bores; or
- maintain a water supply to the owner/s of impacted stock and domestic bores.

To date, the effect of the Groundwater Contingency Strategy is that pumping from the Bland Creek Palaeochannel Borefield ceases when required to meet the trigger levels described above, and water requirements at the CGO are met by alternative internal or external water supplies, including Lachlan River Water Entitlements.

It is noted that groundwater levels at Bore GW036597 (Figure 9) (Billabong area) and Bore GW036611 (Figure 9) (Maslin area), which are located some 6 km from the Bland Creek Palaeochannel Borefield, are largely influenced by groundwater use by other users (e.g. for irrigation).
7 CHANGES IN FLOOD REGIME ON PRODUCTIVE AGRICULTURAL LAND IN NERANG COWAL

7.1 INUNDATION OF PRODUCTIVE LAND IN NERANG COWAL CAUSED BY THE CHANGED FLOOD REGIME

Lake Cowal forms part of the Wilbertroy-Cowal wetlands located on the Jemalong Plain which is a fluvial landform formed in the lower reaches of Bland Creek. The plain extends to the Lachlan River in the north and is bounded by ridgelines to the east and west. Lake Cowal receives inflow from Bland Creek, which drains into the lake at its southern end. Bland Creek commands a catchment area of some 9,500 km² upstream of the lake. Inflows also occur from the Lachlan River via break-out flows during major flood events in the Lachlan causing back-flooding to Lake Cowal. The break-out flows enter the lake via modified floodways at the north-eastern side of the lake. The lake also receives inflow from incident rainfall (North Limited, 1998b).

When full Lake Cowal overflows into Nerang Cowal to the north which in turn overflows to Manna Creek, Bogandillon Creek and ultimately into the Lachlan River (Figure 3). The lake is substantially inundated approximately seven years out of ten, with relatively small increases in lake water depth leading to significant increases in the area of inundation due to the flat, shallow nature of the lake. Without inflows, drying of the lake is driven predominantly by evaporative losses with a period of approximately three years taken to reduce the lake from a full storage to minimal storage levels (North Limited, 1998b).

There is expected to be a very slight increase in the volume of spill from the Lake to Nerang Cowal as a result of the isolation embankment’s intrusion into the Lake (North Limited, 1998a). When a spillover event from Lake Cowal to Nerang Cowal occurs, but does not result in the complete filling of Nerang Cowal, the effect of the lake protection bund will be to transfer more water into Nerang Cowal. Such events would fill Nerang Cowal to a higher level and access to affected land may be reduced while this water evaporates (North Limited, 1998b). The lake protection bund would have no effect on land access in Nerang Cowal for spillover events that would have completely filled Nerang Cowal in any case.

Historical records of Lake Cowal spills to Nerang Cowal, and Nerang Cowal spills to Manna Creek indicate that over the past 100 years, Lake Cowal has spilled to Nerang Cowal on 20 occasions. Of these 20 occasions, both Lake Cowal and Nerang Cowal have spilled 16 times which indicates that for around 80% of Lake Cowal spill events, Nerang Cowal is filled and spills as well (Commissioners of Inquiry for Environment and Planning, 1999).

7.2 AFFECTED LANDHOLDERS

Lands within Nerang Cowal that may be affected by the changed flood regime will be limited to those below the level at which Nerang Cowal overflows to Manna Creek (Section 7.1). The level at which Nerang Cowal overflows to Manna Creek represents the full storage level of Nerang Cowal, consequently any land above this level would not be affected by the changed flood regime.
7.3 APPROPRIATE COMPENSATION MEASURES

7.3.1 Event Based Investigation and Compensation

Evolution will provide compensation to affected landholders as described in Section 7.2, based on an assessment of the economic impact of any additional inundation of productive land.

An investigation of the economic impact of any additional inundation of productive land will be conducted in accordance with the process outlined below. This process may lead to the provision of appropriate compensation to affected landholders.

1. Spill of waters to Nerang Cowal.
2. Evolution to contact landholders to advise of commencement of investigation process. The scope and timeframe of the investigation is to be developed in consultation with DPI – Water and EPA and to the satisfaction of the Secretary of the DP&E.
3. Investigation of the economic impact of any additional inundation of productive land.
 (a) Where the investigation concludes that there is no economic impact arising from the changed flood regime, the results of the investigation will be provided to DPI – Water and EPA for consideration and to the Secretary for approval. Once the Secretary is satisfied the relevant landholder will be advised of the outcome of the investigation.
 (b) Where the investigation concludes that there is the potential for economic impact arising from additional inundation of productive land the following steps will apply:
 (i) Independent valuation conducted, to the satisfaction of the Secretary, to assess economic impact arising from additional inundation of productive land. Factors to be considered include:
 • extent of inundation;
 • timing of inundation in relation to the cropping cycle; and
 • prevailing market value of the affected crop (where grazing land is inundated, compensation would be based on the cost of a suitable replacement feed).
 (ii) Evolution to present offer of appropriate compensation based on the independent valuation for consideration by DPI – Water and the EPA and for the approval of the Secretary of the DP&E.
 (iii) Evolution to provide compensation to affected landholder.

7.3.2 Long-term Compensation

As the lake protection bund is a permanent structure that protrudes into Lake Cowal the effect of the bund, as described in Section 7.1, will be permanent. Therefore a long-term compensation package will be developed that replaces the above event based compensation (i.e. once the long-term compensation is made to the affected landholders no further compensation will be made).

The long-term compensation package will be developed in consultation with DPI – Water and the EPA and to the satisfaction of the Secretary of the DP&E. Empirical data (e.g. measured changes to the Nerang Cowal flood regime and the consequent measured effect of the inundation of productive land) obtained from investigations undertaken to determine appropriate event based compensation will be utilised to determine an appropriate one-off long-term compensation package.
The process for the development and presentation of the long-term compensation will include:

(i) Independent valuation conducted, to the satisfaction of the Secretary of the DP&E, to assess economic impact arising from the additional inundation of productive land. Factors to be considered include:
 - potential extent of inundation; and
 - potential loss in income due to periodic loss of access to productive land.

(ii) Evolution to present offer of appropriate compensation based on the independent valuation for consideration by DPI – Water and the EPA and for the approval of the Secretary of the DP&E.

(iii) Evolution to provide compensation to affected landholder.
8 CONSTRUCTION AND OPERATION OF WATER STORAGES D1 AND D4 AS FIRST FLUSH SYSTEMS

In accordance with Development Consent Condition 4.4(a)(ii), contained water storages D1 and D4 have been constructed to operate as first flush systems to capture initial runoff waters from the outer batters of the northern and southern waste emplacements (where outer batters are defined as the sides of the waste emplacements which slope away from the CGO open pit).

As it relates to the construction and operation of contained water storages D1 and D4, a first flush system is a system designed to capture the initial runoff generated by a 1 in 100 year 48 hour ARI rainfall event (North Limited, 1998a).

As described in Section 4.2.4, toe drains and storages (contained storages D1 and D4) (sized to contain runoff from a 1 in 100 year 48 hour ARI rainfall event) have been constructed in stages around the northern waste emplacement and the southern waste emplacement as the waste emplacements have been developed. These structures will be temporary over the life of the CGO. A temporary pond (adjacent to the eastern edge of the open pit) constructed during the construction/pre-production phase as part of the first flush capture system (Section 9) has since been removed following construction of the lake protection bund.

Rainfall runoff from the outer batters of the mine waste emplacements will be intercepted by toe drains (sized to contain runoff from a 1 in 100 year 48 hour ARI rainfall event) and gravity transferred to either D1 or D4.

Seepage and runoff intercepted by this system (i.e. D1 and D4) will ultimately report to the process plant contained water storage (Barrick, 2009a). Contained water storages D1 and D4 have been fitted with pumps capable of transferring the first flush of initial captured runoff waters from the outer batters of the northern and southern waste emplacements to D6. Waters collected in D1 and D4 will be transferred to the process water dam via a dedicated pumping system. The pumps have been sized to transfer waters generated by the 1 in 100 year 48 hour ARI rainfall event within a period of 5 days, consequently these dams will be emptied between rainfall events. Mobile standby pumps will be maintained on-site at all times to facilitate the transfer of waters to or from dams D1, D4 or D6 in the case of pump failure.
9 MEASURES TO MANAGE AND DISPOSE OF WATERS CAPTURED BEHIND THE TEMPORARY PERIMETER BUND DURING CONSTRUCTION AND OPERATION

As described in Section 4.1.2, the temporary isolation bund is designed to control water inflow to the pit development area from the lake. The temporary isolation bund was developed by end-tipping fill, working at both ends of the temporary isolation bund/shoreline intersection in an arc toward the centre. The movement of trucks during construction was used to achieve the required compaction levels of the bund (North Limited, 1998a).

Prior to the construction of the temporary isolation bund, a continuous silt curtain was erected around the construction zone of the temporary isolation bund. The silt curtain was installed prior to construction commencing in order to trap fine sediment and prevent suspended material migrating into the main body of the lake (North Limited, 1998a). During the construction of the temporary isolation bund a number of erosion and sediment control measures were in place. These measures are described in the ESCMP and are presented below.

Erosion and sediment control measures included (Gilbert and Sutherland, 1997):

- **Erection of continuous silt curtain around construction zone.**

 In the construction phase of the Lake Isolation System, a continuous silt curtain was erected around the construction zone of the temporary isolation bund. The silt curtain was installed prior to construction commencing in order to trap fine sediment and prevent suspended material migrating into the main body of the lake.

 The silt curtain was installed in accordance with details provided in the ESCMP.

- **Provision of clean water diversion and settlement storages for runoff control at borrow areas.**

 Temporary sediment basins for the provision of settlement storages were designed and constructed where runoff may concentrate (as determined by the ESR Manager or delegate) in accordance with details provided in Section 3.4.1 of the *Urban Erosion and Sediment Control Handbook* (CALM, 1992) and in accordance with details provided in Chapter 6.3.3 of *Managing Urban Stormwater – Soils and Construction* (Department of Housing, 1998). Sediment basins were used for the temporary containment of runoff from disturbance areas to facilitate the settlement of suspended solids. Flocculants were used as required when the rate in which the suspended solids settle is slowed by the suspension of dispersive soils. Post construction, sediment basins were either retained as permanent erosion and sediment control structures or backfilled, topsoiled and revegetated once no longer required for erosion and sediment control as determined by the ESR Manager or delegate.

 Temporary diversion banks were designed and constructed upslope of disturbance areas where necessary (as determined by the ESR Manager or delegate) for borrow areas in accordance with details provided in Section 3.3.4.2 of the *Urban Erosion and Sediment Control Handbook* (CALM, 1992) (Appendix B of the ESCMP).

- **Stabilisation and revegetation to occur in parallel with construction.**

 As described in Section 3.3.2 of the ESCMP, the batters of the temporary isolation bund were revegetated in accordance with details provided in Section 3.3.6 of the *Urban Erosion and Sediment Control Handbook* (CALM, 1992) (Appendix B of the ESCMP). Rehabilitation of the temporary isolation bund (part of the new lake foreshore) will continue to be undertaken in accordance with the CWMP with suitable revegetation species.
In accordance with Development Consent Condition 4.4(a)(ii), waters that are captured behind the temporary perimeter bund will be dewatered to a process water storage for re-use.

In accordance with Development Consent Condition 4.3, there will be no disposal of water from the Internal Catchment Drainage System to Lake Cowal (Section 4.1.3).
10 INTEGRATION OF THE LATEST VERSIONS OF THE JEMALONG LAND AND WATER MANAGEMENT PLAN AND THE LAKE COWAL LAND AND WATER MANAGEMENT PLAN

A description of how this WMP integrates the JLWMP as well as the Lake Cowal Land and Water Management Plan is provided in Section 10.1 and 10.2 as required by Development Consent Condition 4.4(a)(ii). In addition, Development Consent Condition 4.6 requires that regard must be had to the latest version of the Mid-Lachlan Regional Vegetation Management Plan during the preparation of the WMP. The Mid Lachlan Regional Vegetation Management Plan, referred to in Condition 4.6, was repealed with effect from 1 December 2005.

10.1 JEMALONG LAND AND WATER MANAGEMENT PLAN

The JLWMP aims to:

"guide the development of the Plan area so that land and water resources are used in a way which is profitable and improves and sustains the environment for current and future generations (Jemalong Land and Water Management Plan Steering Committee, 2000)."

Relevant goals of the JLWMP and their integration into the WMP include:

1. To reduce accessions to the watertable, thereby minimising salinity and waterlogging;

As described in Section 4, the overall objective of the CGO water management system is to contain all potentially contaminated water (contained water) generated within the Project area while diverting all other water around the perimeter of the site (North Limited, 1998a). CGO water management strategies presented in Section 4 minimise the potential for accessions to the watertable, thereby minimising salinity and waterlogging, primarily through the minimisation of areas of surface disturbance, the recycling of contained water (such that groundwater is the lowest priority water supply) and the progressive stabilisation and revegetation of disturbed areas. The dewatering of the CGO open pit and the extraction of water from the CGO borefield is also expected to lower waterlogging potential as it involves the removal of water from the groundwater system.

In regard to salinity the JLWMP makes a number of observations, including moderate to severe salinisation is occurring at a number of locations, including Lake Cowal and Lake Nerang Cowal which act as evaporation basins, concentrating the salt derived from surface water inflows.

The management of salinity within and around the CGO is described in the ESCMP. A summary of the contents of the ESCMP, including salinity management measures is provided in Section 4.1.4.

6. To minimise the adverse effects of local agricultural practices on soil and water quality;

7. To minimise adverse downstream effects of local agricultural practices."

The CGO water management system described in Section 4 aims to minimise potentially adverse effects of mining on soil and water quality and downstream land users.

As described in Section 4, management strategies for the construction and operation phases involve the following principles (North Limited, 1998a):

1. Minimising disturbance areas.
2. Containment of Potentially Contaminated Water.
Section 5 also contains measures to prevent the quality of water in Lake Cowal or any other surface water from being degraded below its pre-ANZECC water quality classification.

10.2 LAKE COWAL LAND AND WATER MANAGEMENT PLAN

North Ltd's plans for a gold mine fall outside the responsibility of this plan and is being assessed independently. However, North should ensure that its EIS and operations are compatible with the vision and objectives of this plan (Australian Water Technologies, 1999).

The Lake Cowal Land and Water Management Plan establishes the following vision against which objectives and actions need to be addressed:

We are managing the lake to sustain and enhance the economic, social and ecological well being of the Lake Cowal area for future generations.

The Lake Cowal Land and Water Management Plan has the following objectives:

1. maintain agricultural productivity;
2. maintain vegetation cover;
3. maintain soil structure; and
4. address catchment issues of groundwater recharge and the threat of salinity.

This WMP integrates with the Lake Cowal Land and Water Management Plan through the adoption of the water management strategies presented in Section 4 that are designed to minimise the potential impact of the CGO, including potential salinity impacts on Lake Cowal and surrounding waters, including groundwater. Management options presented in Chapter 8 of the Lake Cowal Land and Water Management Plan include the provision of water monitoring at Lake Cowal. Monitoring programmes developed for the CGO are summarised in Section 4.3 of this WMP.
11 STRATEGY FOR THE DECOMMISSIONING OF WATER MANAGEMENT STRUCTURES AND LONG-TERM MANAGEMENT OF FINAL VOID AND LAKE PROTECTION BUND

In accordance with Development Consent Condition 4.4(b), a strategy for the decommissioning of water management structures, including water storages both in and around the mine site, the water pipeline and borefield infrastructure associated with the CGO, and the long-term management of the final void and lake protection bund has been prepared and is presented below.

11.1 STRATEGY FOR THE DECOMMISSIONING OF WATER MANAGEMENT STRUCTURES

The strategy is consistent with the existing closure concepts presented in the ESCMP, the CGO RMP and the Monitoring Programme for the Detection of any Movement of the Lake Protection Bund, Water Storage and Tailings Structures and Pit/ Void Walls (Section 4.3.6).

The strategy will be refined and developed over the life of the CGO as part of mine closure planning in consultation with DPI – Water, EPA, DRG and the CEMCC.

11.1.1 Water Management Structures

The permanent water management structures for the CGO comprise:

- Up-catchment Diversion System;
- Internal Catchment Drainage System (including the permanent catchment divide structures); and
- lake isolation system (lake protection bund and perimeter waste rock emplacement).

Rehabilitation monitoring of the permanent surface water diversion systems within ML 1535 would continue to be undertaken post-closure to determine whether the relevant rehabilitation completion criteria have been met. During the rehabilitation works phase, and until satisfactory surface stability is achieved, silt fences and flow retention structures would be maintained to minimise the potential for off-site migration of sediments. Rehabilitation monitoring would continue post-closure until stability of these systems can be demonstrated (i.e. acceptably low risk of environmental harm to Lake Cowal).

Long-term management of the lake protection bund is described further in Section 11.2.2.

Water Storages at the CGO

During closure, the contained water storages (i.e. D1 to D10) would be dewatered and liners removed (i.e. unless otherwise requested to be retained for local landholder use, see below). Decommissioning of the water management infrastructure would be undertaken to the satisfaction of the DRG and EPA in consultation with DPI – Water.

Alternatively, the contained water storages may be retained for local landholder use upon agreement by Evolution and in consultation with DPI – Water and the DRG.
11.1.2 Mine Water Supply Bores and Pipeline

Water Pipeline from the Bland Creek Palaeochannel Borefield

In consultation with the CEMCC, Evolution will identify and discuss post-mining issues during the life of the CGO, which will be specifically reviewed in consultation with the CEMCC at the commencement of the final year of mine operations. During this review process, Evolution will identify opportunities for consultation with local and regional landholders and specifically, the local water users group (Section 6.2.2) regarding possible alternative uses for the Bland Creek Palaeochannel Borefield bores, associated pump stations (including the eastern pump station) and pipeline. Subject to the outcomes of consultation, the Bland Creek Palaeochannel Borefield bores and associated pump stations may be transferred to regional landholders upon agreement by Evolution and in consultation with DPI – Water. Alternatively, the Bland Creek Palaeochannel Borefield bores and associated pump stations may be dismantled and the bores plugged and capped. All works associated with bore decommissioning would be conducted in consultation with DPI – Water and in accordance with the guideline Minimum Construction Requirements for Water Bores in Australia (National Uniform Drillers Licensing Committee, 2012).

Options for Alternate Uses of the Water Pipeline

If no alternative use for the pipeline can be agreed following the consultation process described above, the pipeline would be raised and dismantled for recycling. The section of pipeline in the bed of Lake Cowal would be raised when the lake is dry, subject to strict environmental management procedures and in accordance with relevant DPI – Water requirements. For example, in undertaking the works associated with removal of the pipeline, Evolution would seek to:

- minimise disturbance to soil and vegetation communities;
- maintain the existing/natural hydraulic, hydrologic, geomorphic and ecological functions of Lake Cowal; and
- rehabilitate disturbed areas post pipeline removal as appropriate.

If this is not possible due to successive high rainfall seasons, any decision to remove the pipeline would be discussed with DPI – Water. However, given the maintenance period for rehabilitation at the CGO, it is likely that the lake would be sufficiently dry at some stage during this period.

ML 1535 Saline Groundwater Supply Bores

Given the water supply from these bores is highly saline, it is unlikely that these bores would be suitable and/or requested for ongoing future use by regional landholders post-closure of the CGO. Notwithstanding, consultation would include discussions between Evolution and local and regional landholders regarding potential transfer of the saline groundwater supply borefield infrastructure within ML 1535 for private use.

It is likely, however, that the saline groundwater supply bores, piezos/monitoring bores and associated pipeline would be dismantled and the bores plugged and capped following the cessation of mining operations at the CGO (Barrick, 2013). Works associated with decommissioning of the saline groundwater bores and associated pipeline within ML 1535 would be undertaken during dry conditions in consultation with DPI – Water and would be subject to the same environmental management procedures as described above for the section of the Bland Creek Palaeochannel pipeline located within Lake Cowal.
Eastern Saline Borefield

Given the water supply from the eastern saline borefield bores is highly saline, it is unlikely that these bores would be suitable and/or requested for ongoing future use by regional landholders post-closure of the CGO. As described in Section 6.2.1, prior to development of the eastern saline borefield, there was only one known bore installed within the Cowra aquifer in the region and this bore had never been used for production purposes due to the elevated salinity levels that made it unsuitable for agricultural or domestic use. Notwithstanding, consultation would include discussions between Evolution and local landholders regarding potential transfer of the eastern saline borefield infrastructure for private use.

It is likely, however, that the eastern saline borefield groundwater supply bores, piezos/monitoring bores and associated pipeline would be dismantled and the bores plugged and capped following the cessation of mining operations at the CGO in consultation with DPI – Water. Settlement monuments would likely remain.

11.2 LONG-TERM MANAGEMENT OF THE FINAL VOID AND LAKE PROTECTION BUND

11.2.1 Final Void

The specific rehabilitation objectives for the final void are to (Evolution, 2016):

- leave the void surrounds safe (for humans and stray stock); and
- create habitat opportunities for waterbirds at the approximate level at which void water will reach equilibrium, where feasible.

The surrounds of the final void would be bunded and fenced upon completion of mining. Signposted warnings to the public would be placed along the fence. The top batter of the void would be left at the constructed angle (approximately 1:2). The bund would be planted with a stabilising cover crop and suitable shallow-rooted native and/or endemic species (to minimise the potential for plant root systems to compromise the integrity of the bund).

Long-term Monitoring of Water Quality in the Final Void

Geochemical studies have concluded that the void water quality would not be acidic due to the characteristics of the void wall rock and would be dominated by the overriding influence of saline groundwater to the void (EGi, 1998). Predictions of average void salinity based on a solute balance between inflows and outflows confirm that salt concentrations in void waters would slowly increase – reaching about 70,000 mg/L after about 200 years (Gilberts & Associates, 2009). The final void water quality would reflect the influence of the high salinity in the groundwater (Hydro Engineering & Consulting, 2016). Salinity of the final void water is predicted to continue to increase trending to hyper-salinity, as was predicted in the EIS (Hydro Engineering & Consulting, 2016).

Monitoring of the water quality (salinity and other dissolved analytes) in the final void would be undertaken to confirm the water quality predictions. The surface water quality monitoring programme during mine closure (including monitoring of water quality in the final void) would be developed in consultation with DPI – Water, EPA, DPI (Fisheries) and to the satisfaction of the DP&E.
Long-Term Monitoring of Water Levels in the Final Void

At the completion of mining (and hence dewatering), the final void would be a permanent sink to local groundwater (Kalf and Associates, 1997) and would gradually fill with water from incident rainfall, runoff from adjacent mine areas and seepage from the intercepted aquifers. These flow directions would be fundamentally maintained during and post-mining, as the water level in the open pit recovered and reached an equilibrium level lower than the current potentiometric surface level at the open pit (Coffey Partners International, 1997).

Modelling indicates that the approved final void would reach an estimated equilibrium water level below 130 m AHD (approximately 80 m below spill level) (Hydro Engineering and Consulting, 2016). The void water is not predicted to spill and would be hydrogeologically isolated from and lower than water in Lake Cowal (Gilbert & Associates, 2013), even allowing for adverse future climate change predictions. A final void water balance would be conducted post-closure to assess long-term water levels and groundwater quality in the immediate vicinity of the void.

Water levels would be recorded when monitoring of the water quality in the final void is undertaken following the cessation of mining. This would be incorporated as part of the closure surface water quality monitoring programme to be developed in consultation with DPI – Water, EPA, DPI (Fisheries) and to the satisfaction of the DP&E.

Groundwater water licensing entitlements would be maintained post closure of the CGO during the void filling period, in consultation with DPI – Water, for groundwater inflows to the final void (and for replacing evaporative loss at equilibrium).

Long-Term Monitoring of the Stability of the Final Void Walls

The geotechnical stability of the final void would be reviewed by an appropriately qualified and experienced person in consultation with the DRG as part of the mine closure process. The stability of the final void would continue to be surveyed from the cessation of mining until lease relinquishment (i.e. until the final void walls can be demonstrated to be geotechnically stable and present an acceptably low risk of environmental harm).

Final Void Water Balance Modelling

Consistent with Coffey Geotechnics’ (2016) recommendation, Evolution will conduct a final void water balance post-mine closure to assess long-term water levels in the final void and the potential impact on groundwater quality in the immediate vicinity of the pit void.

11.2.2 Lake Protection Bund

The following landforms together comprise the New Lake Foreshore (Barrick, 2013):

- the temporary isolation bund;
- the lake protection bund and the lower batter of the perimeter waste rock emplacement; and
- the intervening section of lakebed between the temporary isolation bund and the lake protection bund.
The rehabilitation objectives for the CGO’s rehabilitation programme which are applicable to the Lake Protection Bund include (Barrick, 2013):

- The water quality of Lake Cowal is not detrimentally affected by the new landforms.
- Revegetating the new landforms with selected native and/or endemic vegetation that is suited to the physiographic and hydrological features of each landform, and which expand on the areas of remnant endemic vegetation in the surrounding landscape.
- Designing final landforms so that they are stable and include revegetation growth materials that are suited to the landform and support self-sustaining vegetation.
- The placement (wherever possible) of soils on final landforms to enable the progressive establishment of vegetation.
- The expansion of habitat opportunities for wetland and terrestrial fauna species. This includes the design and implementation of rehabilitation works at the New Lake Foreshore in a manner consistent with the *NSW Wetlands Policy* (NSW Department of Environment, Climate Change and Water, 2010).
- The selection of revegetation species in accordance with accepted principles of long-term sustainability (e.g. genotypic variation, vegetation succession, water/drought tolerances).
- Grazing of land within ML 1535 to be excluded during operations and during rehabilitation of the site. At lease relinquishment, rehabilitated final landforms to be fenced with grazing excluded, with some areas suitable for grazing surrounding the rehabilitated final landforms.

Rehabilitation monitoring of the lake protection bund would continue post-closure until the lease relinquishment criteria as described in the RMP have been satisfied (i.e. acceptably low risk of environmental harm to Lake Cowal).

Long-term Monitoring of the Stability of the Lake Protection Bund

Survey assessments would be undertaken annually to determine and quantify any movement of the lake protection bund until permanent stability is demonstrated (i.e. until the lake protection bund can be demonstrated to be geotechnically stable and presents an acceptably low risk of environmental harm).
12 REPORTING PROGRAMME

12.1 SITE WATER DATABASE

As described in Section 1.1, this WMP and the EIS establish the following objectives for the CGO site water management system:

- prevent the quality of any surface water (including waters within Lake Cowal) or groundwater being degraded, through the containment of all potentially contaminated water (contained water) generated within the Project area and diversion of all other water around the perimeter of the site (North Limited, 1998a);
- manage the quantity of surface water and groundwater within and around the mine site through the appropriate design (i.e. sizing), construction and operation of water management structures; and
- establish a monitoring, review and reporting programme that facilitates the identification of potential surface water and groundwater impacts and the development of ameliorative measures as necessary, including provision of appropriate compensation measures for landholders affected by changes to the flood regime of Nerang Cowal.

As described in Section 4.3, the results from the monitoring programmes presented in the SWGMBMP will be maintained in a database for examination and assessment and used to assist in the management of the quality and quantity of surface and groundwater within and around the mine site. Section 4.3 also establishes a review procedure for each of the monitoring programmes.

12.2 MONITORING REPORTS

Annual lake surface water and groundwater monitoring programme reports will be prepared by independent specialists to review and analyse the surface water and groundwater monitoring database results.

The lake surface water monitoring reports will compare water quality results with baseline data and the data set collected to date. Lake surface water monitoring reports will be prepared when lake monitoring commences (i.e. when the water level of the lake is at or above 204.5 m AHD).

Groundwater monitoring reports will analyse trends in groundwater quality, analyse relationships between short-term variations in groundwater levels, review the status of the site water balance and review compliance with relevant groundwater trigger levels to verify the predicted groundwater modelling.

Conclusions and any recommendations from the lake surface water and ground water monitoring reports will be used to review the surface water and groundwater monitoring programmes to determine if further monitoring is necessary (e.g. additional monitoring locations) and review the effectiveness of the water management system and the performance against the WMP objectives (Section 12.2.1). The monitoring report results and any specialist interpretations of trends observed in the monitoring data or recommendations will be reported annually in the Annual Review (Section 12.3).
12.2.1 Effectiveness of Water Management System and Performance against Objectives

In accordance with Development Consent Condition 4.4(a)(i), the effectiveness of the CGO water management system will be assessed by comparing the results of the CGO monitoring programmes against the objectives presented in Section 12.1. The review procedure established in Section 4.3 will be utilised to identify areas where the effectiveness of the CGO water management system could be improved and to develop ameliorative measures as necessary.

A schematic of the key components of the water management system is presented on Figure 8. In addition to the above monitoring, the mine water system will be monitored on a regular basis by the ESR Manager or delegate, including:

- quantity of water transferred between the key components of the water management system;
- quantity of water stored in the tailings storage facility;
- quality of waters stored in containment storages (Section 4.3); and
- climatic conditions.

The status of the mine water balance will be reviewed on a 12 monthly basis by a suitably qualified person. Data collected from the above monitoring will be used to validate the predicted performance of the site water management system and/or to determine the need for any augmentation of the system.

12.3 ANNUAL REVIEW

An Annual Review will be prepared in accordance with the requirements of Development Consent Condition 9.1 and will be submitted to the Secretary of the DP&E by the end of July each year, or as otherwise agreed with the Secretary. Development Consent Condition 9.1 is reproduced below:

9.1 Environmental Management

...

b) Annual Review

By the end of July each year, or as otherwise agreed with the Secretary, the Applicant shall review the environmental performance of the development to the satisfaction of the Secretary. This review must:

(i) describe the development that was carried out in the previous calendar year, and the development that is proposed to be carried out over the next year;
(ii) include a comprehensive review of the monitoring results and complaints records of the development over the previous calendar year, which includes a comparison of these results against the:
 - the relevant statutory requirements, limits or performance measures/criteria;
 - the monitoring results of previous years; and
 - the relevant predictions in the EIS;
(iii) identify any non-compliance over the last year, and describe what actions were (or are being) taken to ensure compliance;
(iv) identify any trends in the monitoring data over the life of the development;
(v) identify any discrepancies between the predicted and actual impacts of the development, and analyse the potential cause of any significant discrepancies; and
(vi) describe what measures will be implemented over the next year to improve the environmental performance of the development.

...
Condition 26 of the Conditions of Authority for ML 1535 also has requirements for Annual Review (formerly the AEMR) reporting which are generally consistent with the requirements of Development Consent Condition 9.1(b). The requirements of Condition 26 are detailed below.

Annual Environmental Management Report (AEMR)

26. (1) Within 12 months of the commencement of mining operations and thereafter annually or, at such other times as may be allowed by the Director-General, the lease holder must lodge an Annual Environmental Management Report (AEMR) with the Director-General.

(2) The AEMR must be prepared in accordance with the Director-General's guidelines current at the time of reporting and contain a review and forecast of performance for the preceding and ensuing twelve months in terms of:

(a) the accepted Mining Operations Plan;
(b) development consent requirements and conditions;
(c) Environment Protection Authority and Department of Land and Water Conservation licences and approvals;
(d) any other statutory environmental requirements;
(e) details of any variations to environmental approvals applicable to the lease area; and
(f) where relevant, progress towards final rehabilitation objectives.

(3) After considering an AEMR the Director-General may, by notice in writing, direct the lease holder to undertake operations, remedial actions or supplementary studies in the manner and within the period specified in the notice to ensure that operations on the lease area are conducted in accordance with sound mining and environmental practice.

(4) The lease holder shall, as and when directed by the Minister, cooperate with the Director-General to conduct and facilitate review of the AEMR involving other government agencies and the local council.

The Annual Review will report on the following issues related to the WMP:

- surface water and groundwater monitoring results;
- details of any trends observed in the monitoring data;
- effectiveness of the water management systems and the performance of CGO activities against the objectives of this WMP (Section 1.1.1) (as required by Development Consent Condition 4.4(a)(ii));
- any proposed improvements to site water management systems that would better meet the site water management objectives;
- details of investigations and consultation with regulatory agencies;
- review of the performance of control measures and the monitoring programme; and
- interpretation and discussion of the monitoring programme results and management measures by a suitably qualified person.

In accordance with Development Consent Condition 9.4(a)(vii), the last five Annual Reviews will be made available on Evolution’s website (www.evolutionmining.com.au).
12.4 EPL REPORTING REQUIREMENTS

In accordance with the CGO’s EPL Conditions, an Annual Return will be prepared including monitoring results from the EPL surface water and groundwater monitoring locations, and a statement of compliance with the relevant EPL water monitoring requirements.

In addition, in accordance with section 66(6) of the Protection of the Environment Operations Act, 1997 (POEO Act) and written requirements issued by the EPA, Evolution will publish pollutant monitoring data collected in accordance with EPL condition requirements, on Evolution’s website (www.evolutionmining.com.au).

12.5 REVIEW OF THIS WMP

In accordance with Condition 9.1(c) of the Development Consent, this WMP will be reviewed, within three months of the submission of:

- an Annual Review under Condition 9.1(b);
- an incident report under Condition 9.3(a);
- an audit under Condition 9.2(a);
- an Annual State of the Environment Report under Condition 9.2(b);
- the approval of any modification to the conditions of the Development Consent; or
- any direction of the Secretary under Condition 1.1(c).

Where this review leads to revisions of the WMP, then within four weeks of the review, the revised WMP will be submitted for the approval of the Secretary of the DP&E (unless otherwise agreed with the Secretary). The revision status of this WMP is indicated on the title page of each copy.

This WMP will be made publicly available on Evolution’s website (www.evolutionmining.com.au), in accordance with Condition 9.4(a)(iii) of the Development Consent. A hard copy of the WMP will also be kept at the CGO.
COMMUNITY CONSULTATION/OBLIGATIONS

COMMUNITY ENVIRONMENTAL MONITORING AND CONSULTATIVE COMMITTEE

A CEMCC has been established for the CGO in accordance with Development Consent Condition 9.1(d). The condition is reproduced below:

9.1 Environmental Management

(d) Community Environmental Monitoring and Consultative Committee

(i) The Applicant shall establish and operate a Community Environmental Monitoring and Consultative Committee (CEMCC) for the development to the satisfaction of the Secretary. This CEMCC must:

- be comprised of an independent chair and at least 2 representatives of the Applicant, 1 representative of BSC, 1 representative of the Lake Cowal Environmental Trust (but not a Trust representative of the Applicant), 4 community representatives (including one member of the Lake Cowal Landholders Association);

- be operated in general accordance with the Guidelines for Establishing and Operating Community Consultative Committees for Mining Projects (Department of Planning, 2007, or its latest version).

- monitor compliance with conditions of this consent and other matters relevant to the operation of the mine during the term of the consent.

Note: The CEMCC is an advisory committee. The Department and other relevant agencies are responsible for ensuring that the Applicant complies with this consent.

(ii) The Applicant shall establish a trust fund to be managed by the Chair of the CEMCC to facilitate the functioning of the CEMCC, and pay $2000 per annum to the fund for the duration of gold processing operations. The annual payment shall be indexed according to the Consumer Price Index (CPI) at the time of payment. The first payment shall be made by the date of the first Committee meeting. The Applicant shall also contribute to the Trust Fund reasonable funds for payment of the independent Chairperson, to the satisfaction of the Secretary

As required, the CEMCC is comprised of:

- four community representatives (including one member of the Lake Cowal Landholders Association);
- one representative of the Lake Cowal Foundation;
- one representative of the Wiradjuri Condobolin Corporation;
- one representative of each of the Bland Shire Council, Forbes Shire Council and Lachlan Shire Council;
- an independent chairperson; and
- two representatives of Evolution.
The CEMCC will continue to provide opportunities for members of the community to attend CEMCC meetings to discuss specific issues relevant to them. This will be achieved by landholders making a request to the CEMCC regarding a particular issue, or by the landowner registering a complaint in the complaints register. Landowners who register complaints may be invited to join in discussion of the issue at the next CEMCC meeting. Items of discussion at these meetings will include mine progress, reporting on environmental monitoring, complaints, rehabilitation activities and any environmental assessments undertaken.

13.2 COMPLAINTS REGISTER

A complaints register will be maintained by the ESR Manager in accordance with EPL Condition M5.1.

Information recorded in the complaints register with respect to each complaint will include:

- date of complaint;
- the method by which the complaint was made;
- nature of complaint; and
- response action taken to date (if no action was taken, the reasons why no action was taken).

An initial response will be provided to the complainant within 24 hours. Preliminary investigations into the complaint will commence within 48 hours of complaint receipt.

A summary of the complaints register will be displayed on the Evolution website in accordance with Development Consent Condition 9.4(a)(v) and will be updated on a monthly basis.

Dispute Resolution

In the event that dispute resolution is necessary, the resolution process will be one of informed discussion involving the complainant and Evolution. Evolution may also refer the dispute (with the complainant’s agreement) to the CGO’s CEMCC for mediation (Section 13.1). In the event that the complainant is still dissatisfied, the matter may be referred to the DP&E for consideration of further measures. Every effort will be made to ensure that concerns are addressed in a manner that results in a mutually acceptable outcome.

13.3 INDEPENDENT ENVIRONMENTAL AUDIT AND INDEPENDENT MONITORING PANEL

Independent Environmental Audit

An Independent Environmental Audit (IEA) will be conducted in accordance with Development Consent Condition 9.2 and may include water-related issues. Development Consent Condition 9.2 is reproduced below.

9.2 Independent Auditing and Review

(a) Independent Environmental Audit

(i) By the end of July 2016, and every 3 years thereafter, unless the Secretary directs otherwise, the Applicant shall commission and pay the full cost of an Independent Environmental Audit of the development. This audit must:

- be conducted by a suitably qualified, experienced and independent team of experts whose appointment has been endorsed by the Secretary;
- include consultation with relevant regulatory agencies, BSC and CEMCC;
• assess the environmental performance of the development and assess whether it is complying with the requirements in this consent and any other relevant approvals (such as environment protection licences and/or mining lease (including any assessment, plan or program required under this consent));
• review the adequacy of any approved strategy, plan or program required under this consent or the abovementioned approvals; and
• recommend measures or actions to improve the environmental performance of the development, and/or strategy, plan or program required under this consent.

Note: This audit team must be led by a suitably qualified auditor, and include ecology and rehabilitation experts, and any other fields specified by the Secretary.

(ii) Within 3 months of commissioning this audit, or as otherwise agreed by the Secretary, the Applicant shall submit a copy of the audit report to the Secretary, together with its response to any recommendations contained in the audit report, and a timetable for the implementation of these recommendations as required. The applicant must implement these recommendations, to the satisfaction of the Secretary.

In accordance with the recommendations from the IMP’s Third Annual Report of the Independent Monitoring Panel for the Cowal Gold Project (October 2007), Evolution will continue to conduct IEAs annually, instead of triennially as defined in Condition 9.2(a)(i).

Independent Monitoring Panel

An IMP has been established in accordance with Development Consent Condition 9.2(b) to review the IEAs, Annual Reviews and all environmental monitoring procedures and results (including water monitoring results and water management measures). Development Consent Condition 9.2(b) provides:

9.2 Independent Auditing and Review

(b) Independent Monitoring Panel

(i) The Applicant shall at its own cost establish an Independent Monitoring Panel prior to commencement of construction. The Applicant shall contribute $30,000 per annum for the functioning of the Panel, unless otherwise agreed by the Secretary. The annual payment shall be indexed according to the Consumer Price Index (CPI) at the time of payment. The first payment shall be paid by the date of commencement of construction and annually thereafter. Selection of the Panel representatives shall be agreed by the Secretary in consultation with relevant government agencies and the CEMCC. The Panel shall at least comprise two duly qualified independent environmental scientists and a representative of the Secretary.

(ii) The panel shall:

• provide an overview of the annual reviews and independent audits required by conditions 9.1(b) and 9.2(a) above;
• regularly review all environmental monitoring procedures undertaken by the Applicant, and monitoring results; and
• provide an Annual State of the Environment Report for Lake Cowal with particular reference to the on-going interaction between the mine and the Lake and any requirements of the Secretary. The first report shall be prepared one year after commencement of construction. The report shall be prepared annually thereafter unless otherwise directed by the Secretary and made publicly available on the Applicant’s website for the development within two weeks of the report’s completion.

Recommendations from the IMP’s Annual State of the Environment report (available on Evolution’s website) and Evolution’s responses, will be described in the Annual Review (Section 12.3).
14 REFERENCES

Barrick (Cowal) Limited (2009a) *Cowal Gold Mine E42 Modification – Modified Request*.

Commonwealth Bureau of Meteorology (2017d) *Climate Averages for Australian Sites – Averages for Wyalong Post Office.*

Department of Urban Affairs and Planning (1998) *Primary Submission to the Commission of Inquiry into the Cowal Gold Project.*

APPENDIX A

GROUNDWATER MONITORING PROGRAMME
BORE LICENCE AND WATER ACCESS LICENCE NUMBERS
<table>
<thead>
<tr>
<th>Bore ID</th>
<th>Licence Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Pit Dewatering Bores¹</td>
<td></td>
</tr>
<tr>
<td>PD1 to PD26</td>
<td>Water Access Licence (WAL) 36615</td>
</tr>
<tr>
<td></td>
<td>(upper 10%, 366 units, Lachlan Alluvial Zone 7)</td>
</tr>
<tr>
<td></td>
<td>Approval Number 70WA614090</td>
</tr>
<tr>
<td></td>
<td>WAL 36617</td>
</tr>
<tr>
<td></td>
<td>(lower 90%, 3,294 units, Upper Lachlan Fold Murray-Darling Basin)</td>
</tr>
<tr>
<td></td>
<td>Approval Number 70WA614090</td>
</tr>
<tr>
<td>Open Pit Area</td>
<td></td>
</tr>
<tr>
<td>PDB1A</td>
<td>70BL232565</td>
</tr>
<tr>
<td>PDB1B</td>
<td>70BL232567</td>
</tr>
<tr>
<td>PDB3A</td>
<td>70BL230583</td>
</tr>
<tr>
<td>PDB3B</td>
<td>70BL232572</td>
</tr>
<tr>
<td>PDB5A</td>
<td>70BL229747</td>
</tr>
<tr>
<td>PDB5B</td>
<td>70BL230584</td>
</tr>
<tr>
<td>Processing Plant Area</td>
<td></td>
</tr>
<tr>
<td>PP01</td>
<td>70BL232327</td>
</tr>
<tr>
<td>PP02</td>
<td>70BL232329</td>
</tr>
<tr>
<td>PP03</td>
<td>70BL232328</td>
</tr>
<tr>
<td>PP04</td>
<td>70BL232330</td>
</tr>
<tr>
<td>PP06</td>
<td>70BL232332</td>
</tr>
<tr>
<td>Northern Tailings Storage Facility Area</td>
<td></td>
</tr>
<tr>
<td>P418A</td>
<td>Pending</td>
</tr>
<tr>
<td>P418B</td>
<td>Pending</td>
</tr>
<tr>
<td>MON01A</td>
<td>70BL230064</td>
</tr>
<tr>
<td>MON01B</td>
<td>70BL230058</td>
</tr>
<tr>
<td>TSFNA</td>
<td>70BL229727</td>
</tr>
<tr>
<td>TSFNB</td>
<td>70BL232569</td>
</tr>
<tr>
<td>TSFNC</td>
<td>70BL232568</td>
</tr>
<tr>
<td>Southern Tailings Storage Facility Area</td>
<td></td>
</tr>
<tr>
<td>P412A</td>
<td>Pending</td>
</tr>
<tr>
<td>P412A-R</td>
<td>70BL232570</td>
</tr>
<tr>
<td>P414A</td>
<td>Pending</td>
</tr>
<tr>
<td>P414B</td>
<td>Pending</td>
</tr>
<tr>
<td>P417A</td>
<td>70BL229637</td>
</tr>
<tr>
<td>P417B</td>
<td>70BL229638</td>
</tr>
<tr>
<td>MON02A</td>
<td>70BL232578</td>
</tr>
<tr>
<td>MON02B</td>
<td>70BL230579</td>
</tr>
</tbody>
</table>

¹ Not all licensed pit dewatering bores are permanently operational. The number of bores located within the open pit dewatering borefield (i.e. bores located on the periphery and within the open pit) may change as the open pit is widened.
Groundwater Monitoring Programme - Bore Licence and Water Access Licence Numbers

<table>
<thead>
<tr>
<th>Bore ID</th>
<th>Licence Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up-gradient of the Northern and Southern Tailings Storage Facilities</td>
<td></td>
</tr>
<tr>
<td>P558A-R</td>
<td>70BL232575</td>
</tr>
<tr>
<td>P555A-R</td>
<td>70BL226558</td>
</tr>
<tr>
<td>Bland Creek Palaeochannel Supply Bores</td>
<td></td>
</tr>
<tr>
<td>Bore 1</td>
<td>WAL 31864</td>
</tr>
<tr>
<td>Bore 2</td>
<td>Approval Number 70WA614076</td>
</tr>
<tr>
<td>Bore 3</td>
<td></td>
</tr>
<tr>
<td>Bore 4</td>
<td></td>
</tr>
<tr>
<td>Bland Creek Palaeochannel Monitoring Bores</td>
<td></td>
</tr>
<tr>
<td>BLPR1</td>
<td>70BL229648</td>
</tr>
<tr>
<td>BLPR2</td>
<td>70BL229647</td>
</tr>
<tr>
<td>BLPR3</td>
<td>70BL229649</td>
</tr>
<tr>
<td>BLPR4</td>
<td>70BL229651</td>
</tr>
<tr>
<td>BLPR5</td>
<td>70BL229653</td>
</tr>
<tr>
<td>BLPR6</td>
<td>70BL229652</td>
</tr>
<tr>
<td>BLPR7</td>
<td>70BL229650</td>
</tr>
<tr>
<td>ML 1535 Saline Groundwater Borefield Supply Bores</td>
<td></td>
</tr>
<tr>
<td>WB01</td>
<td>WAL 36615</td>
</tr>
<tr>
<td>WB39</td>
<td>Approval Number 70WA614090</td>
</tr>
<tr>
<td>ML 1535 Saline Groundwater Borefield Monitoring Bore</td>
<td></td>
</tr>
<tr>
<td>WB12</td>
<td>Pending</td>
</tr>
<tr>
<td>Eastern Saline Borefield Supply Bores</td>
<td></td>
</tr>
<tr>
<td>SB1</td>
<td>WAL 36569</td>
</tr>
<tr>
<td>SB2</td>
<td>Approval Number 70WA614933</td>
</tr>
<tr>
<td>Eastern Saline Borefield Monitoring Bores</td>
<td></td>
</tr>
<tr>
<td>PZ09</td>
<td>70BL232972</td>
</tr>
<tr>
<td>PZ10</td>
<td></td>
</tr>
<tr>
<td>PZ11</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

CHAPTER 3 OF AUSTRALIAN AND NEW ZEALAND GUIDELINES FOR FRESH AND MARINE WATER QUALITY (ANZECC AND ARMCANZ, 2000)
3 Aquatic ecosystems

3.1 Issues for all indicator types

This chapter specifies biological, water and sediment quality guidelines for protecting the range of aquatic ecosystems, from freshwater to marine. As already noted the guidelines are not sufficient in themselves to protect ecosystem integrity; they must be used in the context of local environmental conditions and other important environmental factors, for example, habitat, flow and recruitment. For the protection of rare aquatic communities and/or species, guidelines for the highest level of protection should be applied.a

The chapter is divided into five sections: Section 3.1 is introductory and covers information common to all indicator types; Section 3.2 contains guidelines for the biological assessment of ecosystem condition; Section 3.3, guidelines for physico-chemical stressors; Section 3.4, guidelines for toxicants in water; and Section 3.5, guidelines for toxicants in sediments.

The scientific rationale behind the guidelines, and other useful background information for applying the guidelines, are provided in Volume 2 of the Guidelines. Guidelines for the design and implementation of monitoring and assessment programs involving the types of water quality indicators discussed in this chapter, are contained in Chapter 7.

3.1.1 Philosophy and steps to applying the guidelines

Many benefits of aquatic ecosystems can only be maintained if the ecosystems are protected from degradation. Aquatic ecosystems comprise the animals, plants and micro-organisms that live in water, and the physical and chemical environment and climatic regime with which they interact. It is predominantly the physical components (e.g. light, temperature, mixing, flow, habitat) and chemical components (e.g. organic and inorganic carbon, oxygen, nutrients) of an ecosystem that determine what lives and breeds in it, and therefore the structure of the food web. Biological interactions (e.g. grazing and predation) can also play a part in structuring many aquatic ecosystems.

Humans have caused profound changes in Australian and New Zealand aquatic ecosystems, particularly in the 200 years since European settlement of these countries (ANZECC 1992) and the need to protect and even reverse degradation of important aquatic ecosystems is now recognised. Commercial and recreational harvests of fish and shellfish can only be obtained from waters where ecosystems provide the food and habitat to support the growth and reproduction of the harvestable species. Aquatic ecosystems are worthy of protection for their intrinsic value. Effective conservation of endangered species can only be achieved by conserving the ecosystems that support them (ANZECC 1992).
Box 3.1.1 Human activities affecting aquatic ecosystems

A wide range of human activities can cause variations in abiotic factors, which can lead to biological changes more dramatic than those which occur naturally. The effects of human activities include pollution from industrial, urban, agricultural and mining sources; regulation of rivers through the construction of dams and weirs; salinisation; siltation and sedimentation from land clearance, forestry and road building; clearance of stream bank vegetation; over-exploitation of fisheries resources; introduction of alien plant and animal species; removal and destruction of habitat; polluted discharges from industrial, urban, agricultural and mining activities; over-exploitation of the biological resources of freshwater and marine systems; recreation (e.g. lead shot in wetlands, hydrocarbons from boats and jet skis); cold water from reservoirs and hot water from power plants; ship ballast water containing exotic species; intentional introduction of non-native species for recreation or commercial production; and eutrophication (nutrient enrichment that may stimulate the growth and dominance of toxic cyanobacteria in freshwaters and estuaries, and toxic dinoflagellates in marine waters).

The greatest threat to the maintenance of ecological integrity is habitat destruction (Biodiversity Working Party 1991). The previous ANZECC (1992) guidelines foreshadowed the need for a broader, more holistic approach to aquatic ecosystem management, to consider all changes, not just those affecting water quality. Such changes could include serious pollution of sediments, reduction in stream flow by river regulation, removal of habitat (de-snagging, draining wetlands) or significant changes in catchment land use, any of which could cause significant ecosystem deterioration (ANZECC 1992). The guidelines for water quality management documented here are therefore a necessary but only partially sufficient tool for aquatic ecosystem management or rehabilitation.

The objective adopted in this document for the protection of aquatic ecosystems is:

to maintain and enhance the ‘ecological integrity’ of freshwater and marine ecosystems, including biological diversity, relative abundance and ecological processes.

Ecological integrity, as a measure of the ‘health’ or ‘condition’ of an ecosystem, has been defined by Schofield and Davies (1996) as:

the ability of the aquatic ecosystem to support and maintain key ecological processes and a community of organisms with a species composition, diversity and functional organisation as comparable as possible to that of natural habitats within a region.

Depending on whether the ecosystem is non-degraded or has a history of degradation the management focus can vary from simple maintenance of present water quality to improvement in water quality so that the condition of the ecosystem is more natural and ecological integrity is enhanced.

For the assessment of ecosystem integrity, these Guidelines focus on the structural components of aquatic communities (biodiversity) and key ecological processes (e.g. community metabolism) as defined in Section 3.2.1.1.

With or without biological assessment, chemical and physical water quality indicators continue to be important surrogates for assessing and/or protecting ecosystem integrity. This document therefore provides guidelines for chemical and physical water quality indicators as well as biological indicators.

See Section 3.1.6
Box 3.1.2 Protecting biodiversity

Biological diversity is defined as the variety of life forms, including the various plants, animals and micro-organisms, the genes they contain and the ecosystems of which they are a part (Biodiversity Unit 1994, DEST State of the Environment Advisory Council 1996). Broadly, biodiversity is considered at three levels: genetic diversity, species diversity and ecosystem diversity.

Great difficulty arises in establishing a level of protection for biodiversity so that its maintenance is guaranteed. The Biodiversity Working Party (1991) suggested:

Ideally, it should be that level that guarantees the future evolutionary potential of species and ecosystems. All development is likely to cause some loss of the genetic component of biodiversity, to reduce overall populations of some species, and to interfere to a greater or lesser extent with the ecosystem processes. Protecting biodiversity means ensuring that these factors do not threaten the integrity of ecosystems or the conservation of species.

Figure 3.1.1 shows a framework for applying the guidelines to the protection of aquatic ecosystems. The three parts are described below. Each of the first two steps is common to the application of all the indicator types (biological, physico-chemical, chemical and sediment).

Box 3.1.3 How to apply the guidelines

The following steps should be followed when applying the guidelines for the protection of aquatic ecosystems; steps 1–3 are the first parts of the broad framework presented in figure 3.1.1.

1. **Define the primary management aims** (Section 3.1.1.1)

2. **Determine appropriate guideline trigger values for selected indicators** (Section 3.1.1.2). After determining a balance of indicator types, each of the remaining steps is common to the application of physical and chemical stressors and toxicants in water and sediment. For the biological indicators, the principles of the steps ‘Select relevant indicators’ and ‘Select specific indicators …’ should be applied to the general framework for biological indicators (figure 3.2.1). At this stage, initial sampling can commence, ideally in support of a pilot program.

3. **Assess test site data and, where possible, refine trigger values to guidelines using (i) the general framework for biological indicators (figure 3.2.1), and (ii) the decision frameworks for other indicators**. Frameworks for (ii) are described in Section 3.1.1.3 (‘Risk-based application of the guidelines’). Decision frameworks to apply to specific indicators, and detailed guidance on applying these, may be found in the Guidelines figures and sections as follows:
 - (a) physical and chemical stressors — figure 3.3.1, Section 3.3
 - (b) toxicants — figure 3.4.2, Section 3.4
 - (c) sediments — figure 3.5.1, Section 3.5.

4. **Define water quality objectives** (figure 2.1.1, Section 2.1.5)

5. **Establish a monitoring and assessment program** (figures 2.1.1 & 7.1, Chapter 7).
Define Primary Management Aims

- Define the water body (scientific information, monitoring data, classify ecosystem type (section 3.1.2))
- Determine environmental values to be protected
- Determine level of protection (section 3.1.3)
- Identify environmental concerns
 - e.g. — toxic effects
 - — nuisance aquatic plant growth
 - — maintenance of dissolved oxygen
 - — effects due to changes in salinity
- Determine major natural and anthropogenic factors affecting the ecosystem
- Determine ‘management goals’
 - — often defined in biological terms (section 2.1.3)

Determine appropriate Guideline Trigger Values for selected indicators

- Determine a balance of indicator types (based upon level of protection and local constraints, section 7.2.1)
- Select indicators relevant to concerns and goals
- Determine appropriate guideline trigger values (low risk concentrations of contaminants/stressors; may depend on level of protection)
- Determine specific indicators to be applied

Apply the Trigger Values using (risk-based) Decision Trees or Guideline ‘packages’

- Water quality monitoring data
- Site specific environmental information
- Effects of ecosystem-specific modifying factors.
 (see fig 3.2.1 — biological assessment
 fig 3.3.1 — physical and chemical stressors
 fig 3.4.2 — toxicants
 fig 3.5.1 — sediments)

Figure 3.1.1 Flow chart of the steps involved in applying the guidelines for protection of aquatic ecosystems

3.1.1 Primary management aims

Define the water body, from scientific information and monitoring data. Good management can only be based on detailed information about the ecosystem being protected. Information can be collected by site-specific studies. The previous Guidelines (ANZECC 1992) also recommended that site-specific studies be undertaken in many cases.

Define the water body by ecosystem classification. Using appropriate scientific information the ecosystem can be classified into its corresponding type (up to six types are recognised for the guidelines for physical and chemical stressors; see figure 3.1.3). The new Guidelines recognise the diverse range of ecosystem types
3.1.1 Philosophy and steps to applying the guidelines

3.1.1.1 Philosophy and steps to applying the guidelines

in Australia and New Zealand, and the need to consider the particular attributes of each ecosystem to achieve effective management.

- **a See Section 2.1.3**

 Determine the environmental values. These have been described in Chapter 2.a

- **b Section 3.1.3**

 Determine the level of protection required. What condition should the ecosystem be in, and what level of change would be regarded as acceptable? Three levels of ecosystem condition are proposed as a basis for applying the guidelines.b

- **c Section 3.4 and 3.5**

 Identify environmental concerns. What are the main concerns or problems? For most chemical contaminants the issue is generally toxicity,c but eight other problems or issues can result from physical and chemical stressors.d

- **d Section 3.3**

 Determine the natural and human-induced factors affecting the ecosystem. It is important to identify and collate information about the most important natural processes and human activities that could influence the system being evaluated. These processes and activities need to be taken into account when conceptual models are being formulated to improve understanding of the system. They will also guide subsequent management strategies developed to improve water quality and designs for water quality monitoring programs.

- **e Section 2.1.4 and 3.2**

 Determine management goals. Next, define the management goals or targets, in terms of measurable indicators of the condition (or state) of the ecosystem. Indicators are usually biological parameters, but may also be physical and chemical parameters such as toxicant concentrations (in water column and in sediments) and concentrations or loads of physical and chemical stressors.f

- **f Section 3.3.2**

3.1.1.2 Determine appropriate guideline trigger values for selected indicators

The next exercise is predominately a desk-top study, using existing reference data and other biological, physical and chemical information about the system. Some preliminary analyses may be required to characterise the nature and dispersion behaviour of contaminants. Four steps are involved:

1. **g Section 7.2.1**

 Determine a balance of indicator types. The extent of the water quality assessment program and the level of detail it must achieve will depend partly upon the level of protection assigned to the water resource and the local information constraints. More detailed investigation (and therefore additional monitoring and assessment effort) would be expected for sites assigned high levels of protection and for sites where serious constraints are identified, such as lack of pre-disturbance data.g

2. **Select relevant indicators.** Determine indicators which will be relevant to the environmental concerns and management goals. An indicator is a parameter that can be used as a measure of the quality of water.

3. **Determine appropriate guideline trigger values.** Determine guideline trigger values for all indicators, taking into account level of protection. For physical and chemical stressors and toxicants in water and sediment, the preferred approach to deriving trigger values follows the order: use of biological effects data, then local reference data (mainly physical and chemical stressors), and finally (least preferred) the tables of default values provided in the Guidelines (see figure 3.1.2). (While the default values are the least preferred method of

4 Readers who also read the Monitoring Guidelines (ANZECC & ARMCANZ 2000) should note that there the term ‘indicator’ is only used to refer to parameters that, either severally or singly, can indicate ecosystem condition.
deriving trigger values, it is conceded that these will be most commonly sought and applied until users have acquired local information.)

4. **Select specific indicators for inclusion in the monitoring and assessment program.** The choice of indicators will be based upon the level of protection assigned to the water body, local information constraints, resource constraints, availability of expertise and an initial hazard assessment. The hazard assessment is based upon a comparison of estimated (first-pass) ambient concentrations of indicators against the guideline trigger values determined from the previous step.

![Preferred hierarchy for deriving trigger values](image)

Figure 3.1.2 Procedures for deriving and refining trigger values, and assessing test sites, for physical and chemical stressors and toxicants in water and sediment. Dark grey shading indicates most likely point of entry for users requiring trigger values.

3.1.1.3 Risk-based application of the guidelines

This is the final part of the framework for applying the guidelines. In summary, for each issue (such as toxicity, algal blooms, deoxygenation) or type of water quality indicator (physical/chemical stressor, toxicant and sediment) the Guidelines provide detailed decision frameworks in the form of decision trees or guideline ‘packages’ for applying the guideline trigger (low risk) values, rather than...
simplistic threshold numbers for single indicators. If data from a test site exceed
the trigger value, the decision trees are used to determine if the test values are
inappropriately (unnecessarily) ‘triggering’ potential risk and hence management
response. For this, ecosystem-specific modifying factors are introduced to assess
test data. The decision trees also enable the guideline trigger values to be adjusted
and refined. Further introduction to the use of decision trees in this assessment of
test site data and refinement of trigger values is provided in section 3.1.5.

While it is not mandatory to use decision frameworks, they are recommended so
that the resulting guidelines are relevant to the site. The guideline trigger values are
based on bioavailable concentrations, and hence are relatively conservative when
compared with total concentrations in the field, so the use of the decision
frameworks will increase guideline concentrations in most cases.

For biological indicators a general framework is applied, instead of a decision-tree
framework.

3.1.2 Features and classification of aquatic ecosystems in Australia and New
Zealand

3.1.2.1 Ecosystem features that may affect water quality assessment and ecosystem
protection

There is a diverse range of ecosystem types in Australia and New Zealand,
including tropical, temperate, arid, alpine and lowland. Within ecosystem types,
waterbodies may be static, flowing or ephemeral, deep or shallow, and fresh,
brackish or saline.

Variations in physical and chemical water quality variables can occur naturally
through droughts and floods, climatic conditions and erosion events, and can have
important consequences for the biota. Variations in climate, and, consequent
variations in rainfall, runoff and river flow, are particularly marked in Australia
(Finlayson & McMahon 1988, Harris & Baxter 1996, Harris 1996), and are
strongly linked to climate variability through mechanisms such as the El Niño–
Southern Oscillation or ENSO (Simpson et al. 1993).

Elsewhere in the Guidelines, a comprehensive account of the features of Australian
and New Zealand ecosystems is provided, together with some of the consequences
of these features that should be taken into account when considering water quality
assessment and ecosystem protection.a Table 3.1.1 summarises these issues.

3.1.2.2 Classifying the ecosystem

The wide range of geographic, climatic, physical and biological factors that can
influence a particular aquatic ecosystem makes it essential that ecosystem
management incorporates site-specific information together with more general
scientific information relating to ecosystem changes. This is the basis of the new
approach to the management of aquatic ecosystems,b involving the use of decision
frameworks to tailor water quality guidelines to local conditions. A first step in
tailoring guidelines to local conditions is to choose an appropriate category of
ecosystem; hence the need to classify the ecosystem being monitored.
Table 3.1.1 Some features of Australian and New Zealand ecosystems that have possible consequences for water quality assessment and ecosystem protection.

<table>
<thead>
<tr>
<th>Ecosystem feature</th>
<th>Possible consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>High degree of endemism amongst the biota of many Australian and New Zealand ecosystems (fresh and marine)</td>
<td>Possible risks to natural heritage and conservation values</td>
</tr>
</tbody>
</table>
| Naturally low nutrient status of many of Australia’s fresh and marine systems | • Ecosystems are adapted to low nutrient status; (natural) lack of algal grazers for example may mean algal growth/blooms proceed unchecked
• Greater accuracy and precision may be required for water sampling programs where early detection of trends in nutrient concentrations is important |
| Fresh water systems of Australia often dominated by sodium and chloride | Greater ‘softness’ of these systems places biota at risk from classes of contaminants for which water hardness and acid-buffering capacity may ameliorate toxicity |
| Water temperatures in Australian aquatic ecosystems are often higher and more varied than those in northern hemisphere ecosystems | More often, toxicity of chemicals increases with increasing temperature — an important consideration given that most toxicity data used in the Guidelines are derived from northern hemisphere studies. |
| Many of Australia’s fresh water systems have only periodic/episodic flow or water availability | • Dilution of contaminants is reduced at low/recessional flow or water levels
• After dry periods, oxidative processes can produce degradation products such as acidity that may mobilise deposited contaminants with ‘first flush’ flows (e.g. oxidation of sulfide deposits)
• Classifications based on trophic status, and developed for deep lakes of Northern Hemisphere, unlikely to be applicable to shallow Australian standing waters |

Over recent years, there has been considerable activity in classifying ecosystems or parts of them, and this experience has been used to develop the general scheme for these Guidelines. This is a hierarchical classification, with different levels of detail applying to different categories of indicator. For future versions of the Guidelines it is envisaged that this classification will be developed further as knowledge increases, with specific guidelines and protocols being developed for each combination of indicator and ecosystem type. The annex of Appendix 2, Volume 2, describes some of the research in ecosystem classification, with some commentary on recent applications of more detailed schemes in Victoria and New Zealand that may be useful in future revisions of these Guidelines.

The ecosystem classification is given in figure 3.1.3. Note that each of the broad categories of indicators has a different level of detail in terms of the ecosystem classification. Thus for sediments, the guidelines make no distinction between freshwater and marine systems, whereas for chemical and physical stressors there are six categories of ecosystem. This approach has been adopted because different levels of detail are available or applicable to each category of indicator: information about sediment indicators is at a relatively early stage of development whereas chemical and physical stressors have a much longer history of use in water quality monitoring.
3.1.3 Assigning a level of protection

To define a level of protection this section describes a hierarchy of ecosystem conditions, and recommends threshold levels of change that are acceptable for each. The Guidelines also provide data or advice to assist relevant jurisdictions to make their own informed decisions on alternative levels of protection where desired.

3.1.3.1 Ecosystem condition and levels of protection

The previous Guidelines (ANZECC 1992), in describing the concept of levels of protection, recognised two categories of aquatic ecosystem condition: (i) pristine or outstanding ecosystems for which maintenance of the existing water quality was
Three ecosystem conditions are recognised.

1. **High conservation/ecological value systems** — effectively unmodified or other highly-valued ecosystems, typically (but not always) occurring in national parks, conservation reserves or in remote and/or inaccessible locations. While there are no aquatic ecosystems in Australia and New Zealand that are entirely without some human influence, the ecological integrity of high conservation/ecological value systems is regarded as intact.

2. **Slightly to moderately disturbed systems** — ecosystems in which aquatic biological diversity may have been adversely affected to a relatively small but measurable degree by human activity. The biological communities remain in a healthy condition and ecosystem integrity is largely retained. Typically, freshwater systems would have slightly to moderately cleared catchments and/or reasonably intact riparian vegetation; marine systems would have largely intact habitats and associated biological communities. Slightly–moderately disturbed systems could include rural streams receiving runoff from land disturbed to varying degrees by grazing or pastoralism, or marine ecosystems lying immediately adjacent to metropolitan areas.

3. **Highly disturbed systems**. These are measurably degraded ecosystems of lower ecological value. Examples of highly disturbed systems would be some shipping ports and sections of harbours serving coastal cities, urban streams receiving road and stormwater runoff, or rural streams receiving runoff from intensive horticulture.

The third ecosystem condition recognises that degraded aquatic ecosystems still retain, or after rehabilitation may have, ecological or conservation values, but for practical reasons it may not be feasible to return them to a slightly–moderately disturbed condition.

A level of protection is a level of quality desired by stakeholders and implied by the selected management goals and water quality objectives for the water resource. The water quality objectives may have been derived from default guideline values recommended for the particular ecosystem condition, or they may represent an acceptable level of change from a defined reference condition; it can be formalised as a critical effect size. Where appropriate, the reference condition is defined from as many reference sites as practicable using pre-impact data where appropriate. The reference condition could correspond to one of the three recognised condition levels described above, depending upon the desired level of protection.

Key stakeholders in a region would normally be expected to decide upon an appropriate level of protection through determination of the management goals and based on the community’s long-term desires for the ecosystem. The philosophy behind selecting a level of protection should be (1) maintain the existing ecosystem condition, or (2) enhance a modified ecosystem by targeting the most appropriate condition level. (Thus the recommended level of protection for ‘condition 1 ecosystems’ (above) would be no change beyond any natural variability.) This is
the starting point from which local jurisdictions might negotiate or select a level of protection for a given ecosystem: in doing so, they might need to draw upon more than the general scientific advice provided in these Guidelines. A number of other factors, such as those of a socio-economic nature, might need to be included in the decision making process.

3.1.3.2 A framework for assigning a level of protection

When stakeholders are deciding upon an appropriate level of protection for ecosystems, it is suggested that they consider the following framework based on the three ecosystem conditions recognised above.

Some waters (e.g. many of those in national parks or reserves) are highly valued for their unmodified state and outstanding natural values (condition 1 ecosystems). In many countries and in some Australian states these waters are afforded a high degree of protection by ensuring that there is no reduction in the existing water quality, irrespective of the water quality guidelines (ANZECC 1992).

The present Guidelines recommend that for condition 1 ecosystems the values of the indicators of biological diversity should not change markedly. To meet this goal, the decision criteria for detecting a change should be ecologically conservative and based on sound ecological principles. Moreover, a precautionary approach is recommended — management action should be considered for any apparent trend away from a baseline, or once an agreed threshold has been reached.

Any decision to relax the physical and chemical guidelines for condition 1 ecosystems should only be made if it is known that such a degradation in water quality will not compromise the objective of maintaining biological diversity in the system. Therefore, considerable biological assessment data would be required for the system in question, including biological effects and an ongoing monitoring program based on sufficient baseline data. The nature of contaminants expected in the receiving waters might also affect decisions on this issue. Where there are few biological assessment data available for the system, the management objective should be to ensure no change in the concentrations of the physical and chemical water quality variables beyond natural variation.

Where data for a reference/control site have only been collected for a limited period and the reference condition cannot be clearly characterised, the power of detection should be increased by using more indicators, and/or more reference/control sites and/or more monitoring sites placed along any probable disturbance gradients.

For slightly to moderately disturbed ecosystems (‘condition 2 ecosystems’), some relaxation of the stringent management approach used for condition 1 ecosystems may be appropriate. An increased level of change might be acceptable, or there might be reduced inferential strength for detecting any change in biological diversity. Nevertheless, as for condition 1 ecosystems, maintenance of biological diversity relative to a suitable reference condition should be a key management goal. The Guidelines provide specific guidelines for biological indicators for each ecosystem condition.

5 While waters in many remote and inaccessible locations may retain an unmodified condition, the level of protection assigned to these systems is a jurisdictional decision made in consultation with stakeholders. It does not automatically follow that these waters default to ‘condition 1 ecosystems’.
of the three ecosystem conditions.a For the other types of water quality indicator, the default guidelines in Sections 3.3–3.5 provide a suitable level of protection for condition 2 ecosystems.

The situation for highly disturbed ecosystems (‘condition 3 ecosystems’) can be more flexible. The general objective might be to retain a functional, albeit modified, ecosystem that would support the management goals assigned to it. In most cases the ecological values of highly disturbed ecosystems can be maintained by the direct application of the guidelines contained in this chapter. However, there could be situations where these guidelines would be too stringent and a lower level of protection would be sought. Some guidance to assist managers in these situations is provided in the discussion of each indicator type.b

Table 3.1.2 summarises a general framework for considering levels of protection across each of the indicator types for each of the ecosystem conditions.

The three levels of protection described above form just one practical but arbitrary approach to viewing the continuum of disturbance across ecosystems. Inevitably, stakeholders in different jurisdictions, catchments or regions will make different judgements about ecosystem conditions. For example, an ecosystem that is regarded as highly disturbed in one area could be regarded as only slightly to moderately disturbed in a more populated region. This makes it imperative, as emphasised in these Guidelines, that the setting of levels of protection is carried out in an open and transparent way, involving all key stakeholders, so that a fair and reasonable outcome is achieved.

Note that even though a system is assigned a certain level of protection, it does not have to remain ‘locked’ at that level in perpetuity. The environmental values and management goals (including level of protection) for a particular system should normally be reviewed after a defined period of time, and stakeholders may agree to assign it a different level of protection at that time. However, the concept of continual improvement should be promoted always, to ensure that future options for a water resource are maximised and that highly disturbed systems are not regarded as ‘pollution havens’.

3.1.3.3 Alternative levels of protection

Local jurisdictions may negotiate alternative site-specific levels of protection after considering factors such as:

- whether a policy of ‘no release’ (total containment) of contaminants applies;
- the nature of contaminants that might reach aquatic ecosystems. (Greater consideration might be given to those ecosystems receiving contaminants or effluents of potentially high toxicity and which are persistent in the environment, e.g. metals. Alternatively, differing levels of protection could apply according to the anticipated capacity of an ecosystem to readily recover from impact if contamination is to be of short duration.)
- perceived conservation/ecological values of the system additional to those recognised in the simple classification of ecosystem condition described in Sections 3.1.2 and 3.1.3.1.

a See Section 3.2.4
b Sections 3.1.8 & 3.2 to 3.5
Table 3.1.2 Recommended levels of protection defined for each indicator type

<table>
<thead>
<tr>
<th>Ecosystem condition</th>
<th>Biological indicators</th>
<th>Physical & chemical stressors</th>
<th>Toxicants</th>
<th>Sediments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 High conservation/ ecological value</td>
<td>No change in biodiversity beyond natural variability. Recommend ecologically conservative decision criteria for level of detection.</td>
<td>No change beyond natural variability recommended, using ecologically conservative decision criteria for detecting change. Any relaxation of this objective should only occur where comprehensive biological effects and monitoring data clearly show that biodiversity would not be altered.</td>
<td>For toxicants generated by human activities, detection at any concentration could be grounds for investigating their source and for management intervention; for naturally-occurring toxicants, background concentrations should not be exceeded. Where local biological or chemical data have not yet been gathered, apply the default values provided in sec 3.4.2.4. Any relaxation of these objectives should only occur where comprehensive biological effects and monitoring data clearly show that biodiversity would not be altered.</td>
<td>No change from background variability characterised by the reference condition. Any relaxation of this objective should only occur where comprehensive biological effects and monitoring data clearly show that biodiversity would not be altered.</td>
</tr>
<tr>
<td></td>
<td>Where reference condition is poorly characterised, actions to increase the power of detecting a change recommended.</td>
<td>Where reference condition is poorly characterised, actions to increase the power of detecting a change recommended.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precautionary approach recommended for assessment of post-baseline data through trend analysis or feedback triggers.</td>
<td>Precautionary approach taken for assessment of post-baseline data through trend analysis or feedback triggers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Slightly to moderately disturbed systems</td>
<td>Negotiated statistical decision criteria for detecting departure from reference condition. Maintenance of biodiversity still a key management goal.</td>
<td>Always preferable to use data on local biological effects to derive guidelines. If local biological effects data unavailable, local or regional reference site data used to derive guideline values using suggested approach in sec 3.3.2.3. Alternatives to the default decision criteria for detecting departure from reference condition may be negotiated by stakeholders but should be ecologically conservative and not compromise biodiversity. Where local reference site data not yet gathered, apply default, regional low-risk trigger values from sec 3.3.2.5.</td>
<td>Always preferable to use data on local biological effects (including DTA) to derive guidelines. If local biological effects data unavailable, apply default, low-risk trigger values from sec 3.4.2.4. Precautionary approach may be required for assessment of post-baseline data through trend analysis or feedback triggers. In the case of effluent discharges, direct toxicity assessment (DTA) should also be required. Precautionary approach taken for assessment of post-baseline data through trend analysis or feedback triggers.</td>
<td>The sediment quality guidelines provided in sec 3.5 apply. Precautionary approach taken for assessment of post-baseline data through trend analysis or feedback triggers.</td>
</tr>
<tr>
<td></td>
<td>Where reference condition is poorly characterised, actions to increase the inferential strength of the monitoring program suggested.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precautionary approach may be required for assessment of post-baseline data through trend analysis or feedback triggers.</td>
<td>Precautionary approach may be required for assessment of post-baseline data through trend analysis or feedback triggers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Highly disturbed systems</td>
<td>Selection of reference condition within this category based on community desires. Negotiated statistical decision criteria for detecting departure from reference condition may be more lenient than the previous two condition categories.</td>
<td>Local or regional reference site data used to derive guideline values using suggested approach in sec 3.3.2.3. Selection of reference condition within this category based on community desires. Negotiated statistical decision criteria may be more lenient than the previous two condition categories. Where local reference site data not yet gathered, apply default, regional low-risk trigger values from sec 3.3.2.5; or use biological effects data from the literature to derive guidelines.</td>
<td>Apply the same guidelines as for ‘slightly–moderately’ disturbed systems. However, the lower protection levels provided in the Guidelines may be accepted by stakeholders. DTA could be used as an alternative approach for deriving site-specific guidelines.</td>
<td>Relaxation of the trigger values where appropriate, taking into account both upper and lower guideline values. Precautionary approach may be required for assessment of post-baseline data through trend analysis or feedback triggers.</td>
</tr>
</tbody>
</table>

1 For globally-distributed chemicals such as DDT residues, it may be necessary to apply background concentrations, as for naturally-occurring toxicants.
3.1.4 Defining a reference condition

For some water quality indicators, users will need to define a reference condition that provides both a target for management actions to aim for and a meaningful comparison for use in a monitoring or assessment program. The reference condition is particularly appropriate to condition 2 or condition 3 ecosystems, and is a key component of the framework provided in figure 3.1.1 for applying the guidelines. For biological indicators, and for physical and chemical stressors where no biological or ecological effects data are available, the preferred approach to deriving guideline trigger values is from local reference data; for toxicants in water or sediment this reference condition, sometimes called background data, may in some situations supplant the default guideline values. The next sections summarise the sources of information that can be used for defining a reference condition, and clarify the terminology of ‘controls’ and what constitutes a ‘site’, respectively. Chapter 7 describes the design of monitoring programs, but also see the Monitoring Guidelines (ANZECC & ARMCANZ 2000).

3.1.4.1 Sources of information

The reference condition for sites that may or may not be disturbed at present can be defined in terms of these sources of information: historical data collected from the site being assessed; spatial data collected from sites or areas nearby that are uninfluenced (or not as influenced) by the disturbance being assessed; or data derived from other sources.

1. Historical data collected from the site being assessed will usually represent measurements made before a disturbance or before management actions. For example, measurements of salinity collected from a river before the initiation of an irrigation scheme may be used to set the reference condition for salinity that stakeholders would hope to achieve in a rehabilitation program. For cases where rehabilitation of degraded systems can only be achieved over long time-scales, such benchmarks may be progressively stepped by way of a series of targets intermediate between the existing and pre-disturbance condition.

2. Spatial data can be collected from reference sites or areas nearby that are relatively uninfluenced by the disturbance being assessed. The sites include, but are not restricted to, control sites which are identical in all respects to the site being assessed (sometimes called the test site) except for the disturbance (the distinction between control and reference sites is explained more fully below). For example, the impact of an ocean outfall on marine benthos may be judged relative to the values of the selected indicators in one or more reference sites that are in the same vicinity but lack any influence of an outfall. For modified ecosystems, ‘best-available’ reference sites may provide the only choice for the reference condition.

3. Data can be derived from other sources if there are neither suitable historical data nor comparable reference sites. The reference condition may be identifiable from the published literature, from models, from expert opinion, from detailed consultations with stakeholders, or from some combination of all of these. For example, when setting the reference condition for nutrient concentrations in a series of wetlands, information on desirable and attainable concentrations may come from published studies from similar regions overseas, from nutrient models...
with appropriate local adaptations, from scientific advice about what levels of nutrients result in undesirable end-points (e.g. blooms of toxic cyanobacteria) and from input from community groups and landholders about their expectations of what the wetlands should become. The necessary negotiations need considerable technical and social skill. The reference condition should not be defined in terms of ecological targets that are impossible to attain. Conversely, the reference condition should represent a substantial achievement in environmental protection that is agreeable to the majority of stakeholders.

Obviously, the best reference conditions are set by locally appropriate data. If the disturbance to be assessed has not yet occurred, then pre-disturbance data provide a valuable basis from which to define the reference condition. If the disturbance has already occurred then data from reference sites and other appropriate sources can be used to define the reference condition. These issues are treated in more depth in the Monitoring Guidelines (ANZECC & ARMCANZ 2000).

In summary, the reference condition must be chosen using information about the physical and biological characteristics of both catchment and aquatic environment to ensure the sites are relevant and represent suitable target conditions. Some of the important factors that should be considered are these:

- data collected prior to the disturbance need to be of sufficient quality and timespan to provide valid comparisons with post-disturbance data;
- where possible, pre-disturbance data should be collected from appropriate control or reference sites as well as from the site(s) subjected to the disturbance;
- the definition of a reference condition must be consistent with the level of protection proposed for the ecosystem in question — unimpacted, or slightly modified or relatively degraded (where the community does not wish to rehabilitate a degraded ecosystem to such a high level);
- sites should be from the same biogeographic and climatic region;
- reference site catchments should have similar geology, soil types and topography;
- reference sites should contain a range of habitats similar to those at the test sites;
- reference and test sites should not be so close to each other that changes in the test site due to the disturbance also result in changes in the reference sites, nor, conversely, should changes in the reference sites mask changes that might be occurring in the test site.

3.1.4.2 Clarification of the terms ‘control’ and ‘reference’

In the context of monitoring and assessing water quality, a disturbance (or ‘treatment’) is an event or occurrence which may or may not result in an effect on a water body, and the ‘control’ refers to a set of observations taken from conditions identical to the disturbed conditions except for the disturbance.

Controls may be defined in terms of space (‘spatial controls’) or time (‘temporal controls’) or both. For example, if stakeholders had to assess the effect of urbanisation on a wetland, they might be able to find similar wetlands nearby with no urban development in their catchments, to act as spatial controls. If development...
had not commenced, the stakeholders could collect data from the wetland at this stage to use as a temporal control, and the inferences that they could make about the effects of urbanisation on the wetland would be strongest if they collected data from the spatial controls before and after urbanisation as well.a

In environmental science, as in classical field experiments, ‘controls’ are unlikely to be completely identical to ‘treatments’. If there is important systematic variation between ‘controls’ and ‘treatments’, this can be incorporated into the sampling program and statistical analysis via regression-related techniques. Analysis of covariance is one classical technique for handling such differences. Some statistical textbooks refer to these procedures as methods of statistical control (which should not be confused with statistical process control or control charting).

Sometimes controls are impossible to find, but there are still sites or sets of temporal observations that represent a desirable set of conditions that the disturbed site(s) could ultimately match, if rehabilitated. Thus the term reference condition or reference site denotes something more general than the ‘control’. In the wetland example above, there may be no wetlands on similar soil types that are completely free of urbanisation, and even those with little urbanisation may differ in the dominant land-use in their catchments. In this instance, stakeholders would need to negotiate over which wetlands would provide the most appropriate reference conditions.

The use of reference sites to establish targets on a broader regional scale is becoming increasingly popular. For example, this method is the basis of the national rapid biological assessment procedure adopted for the AUSRIVAS program (Schofield & Davies 1996). In this case, reference sites are usually selected in ecosystems that are similar to and in the vicinity of a test ecosystem but unimpacted or little changed.

3.1.4.3 What constitutes ‘a site’

For the purposes of these Guidelines, a site refers to a location which is being monitored or assessed, and constitutes the smallest spatial unit that will be used in judging whether an impact has occurred. Thus a site may vary in size from a few square metres, as in the case of a stretch of an upland stream, to a few square kilometres, as in the case of a large seagrass bed. In the case of the upland stream, stakeholders may be interested in monitoring the water quality of the site and comparing it with, for example, several other reference sites on other streams nearby. For the large seagrass bed, selected indicators might be measured in that bed and compared with measures from similar seagrass beds elsewhere on the coast. Only rarely will sites be homogeneous internally. Concentrations of chemicals may vary across a stream, and there may be differences in the sediments and species composition across a seagrass bed. There are a number of strategies for dealing with such within-site variation.b For large sites, this may involve sampling at more than one spatial scale within the site. For example, in the seagrass bed, several sampling locations of, say, 100 m² may be selected, within which smaller ‘sub-locations’ (e.g. 1 m² quadrats) may be selected. Care needs to be taken not to confuse these within-site spatial units with the site itself. Note that in the literature there is little consistency in the use of terms such as ‘site’, ‘location’, ‘area’, etc., so readers should not assume that the term ‘site’ in other publications automatically equates with the term ‘site’ as it is used in these Guidelines and in the Monitoring Guidelines (ANZECC & ARMCANZ 2000).

a See Section 7.2
b See Ch 7 and the Monitoring Guidelines
3.1.5 Decision frameworks for assessing test site data and deriving site-specific water quality guidelines

The effect of a particular stressor or toxicant on biological diversity or ecological integrity depends upon three major factors:

- the nature of the ecosystem, its biological communities and processes;
- the type of stressor;
- the influence of environmental factors which may modify the effect of the stressor.

Aquatic ecosystems are variable and complex and difficult to manage. The previous Guidelines recognised the need to address this variability and the influence of environmental factors on stressors. This section introduces the concept of managers using risk-based decision frameworks to assess test site data and to tailor guidelines to suit regional, local or site-specific conditions. It provides a consistent framework that can be used in New Zealand and the states and territories of Australia for applying the guidelines in a meaningful way to the various types of aquatic ecosystems in these regions. The approach addresses the issues of variability and complexity, more realistically and effectively protecting biodiversity or ecological integrity. As emphasised above, the approach does not constitute or require a full risk assessment, but simply assists in providing a site-specific estimate of whether a stressor represents a low, possible or high risk to the aquatic ecosystem of interest.

As already discussed, for non-biological indicators, these Guidelines recommend guideline trigger values, which represent bioavailable concentrations or unacceptable levels of contamination and are equivalent to the old single number guidelines. If exceeded, these values trigger the incorporation of additional information or further investigation to determine whether or not a real risk to the ecosystem exists and, where possible, to adjust the trigger values into regional, local or site-specific guidelines. The decision frameworks in Sections 3.3–3.5 demonstrate how this can be done.

Through the decision frameworks the ambient (existing) concentration of a contaminant is compared with the guideline trigger value. The initial measurement may be a relatively simple and therefore low-cost measurement (e.g. total concentration). If the trigger value is not exceeded, the risk of an impact is low and no further action is required. However, if the trigger value is exceeded there is some risk of an impact occurring and successive, more complex steps should be taken to account for environmental factors that modify the bioavailability, biological uptake or toxicity of the stressor; this would also entail considering more complex monitoring designs and negotiating effect sizes explicitly with stakeholders. The final guideline for that parameter should therefore reflect the real hazard to the particular ecosystem.

At each step in the process, a decision must be made on whether the adjusted trigger value should be modified further or accepted. In general, the further one travels down the series of steps the more resource-intensive the steps become; the user should consider costs vs. benefits for each step. At any stage the decision tree process can be

6 Formally, the guideline trigger values are held to be a default, conservative statement of the critical effect size as explained in section 3.1.7.
terminated and the most recently modified trigger value applied as the guideline for the particular situation. Because the default trigger values for toxicants at least are conservative, a precautionary approach should be applied, using these values where there is no background information on a particular system to which the guidelines are to be applied, and no program for its acquisition. Alternatively the preferred option might be to conduct toxicological studies or direct toxicity assessment relevant to the site and use these data to derive a site-specific guideline.

Where a trigger value is refined using data gathered from a test site on a single or limited sampling occasion(s), this does not automatically mean that this new value applies henceforth in further test site/trigger value comparisons. More extensive information is required before a guideline trigger value can be revised. For this, it is important to distinguish two levels of refinement of guideline trigger values:

1. The first level applies to some indicators where guideline trigger values can be adjusted and refined upfront, relatively simply, with fore-knowledge of the range of values of some key physical and chemical parameters that occur in a waterbody. This is particularly relevant to some toxicants. For example, the toxicity and bioavailability of some metals (e.g. copper, zinc and cadmium) are strongly influenced by water quality conditions such as hardness, dissolved organic matter and pH, and recent literature has increased the understanding of the toxicity of different metal species. The current state of knowledge limits upfront revision of the trigger values for these metals to a hardness correction, using the simple algorithms in table 3.4.3. There is also some scope for modifying the trigger values for a few non-metallic inorganic and organic toxicants, based on associated water quality parameters (e.g. pH, for the ammonia trigger value).

2. For most indicators and issues, however, trigger values are refined only after continuous and extensive monitoring shows that test site data exceedances are consistently assessed as posing no risk to the ecosystem, using the decision trees. Trigger values can also be refined if longer term monitoring shows that test site data are consistently below the trigger values or, for situations such as naturally mineral-rich waters where the natural background total concentrations of some metals exceed the new trigger values. For each of these cases, the methods described in section 7.4.4.2/1 can be used to refine the guideline trigger values for all (non-biological) indicator types.

It is not mandatory to use the decision frameworks, but they are important if meaningful and appropriate guidelines are to be applied. Moreover, simple adjustments and corrections such as those described in 1 above make this a cost-effective exercise where data on key water quality parameters are available.

Generally, local biological effects data and data from local reference site(s) that closely match the test site\(^7\) are not required in the decision trees. If test site data exceed trigger values that have been derived from these local data, this would

\(^7\) This latter situation might be relevant to point-source disturbances in streams, where reference sites are located upstream of test sites; the reference and test sites would be similar in all appearances and there would be no confounding factors, apart from the disturbance and stressor in question, occurring between the sites. Local reference sites even in an adjacent stream/tributary might not necessarily closely match test sites.
normally trigger management action because these locally-derived trigger values already have ecosystem-specific modifying factors built into them. For the same reason, these locally-derived trigger values do not require refinement themselves through the decision trees, though if there was opportunity to derive guideline values based upon sound local biological effects data, these should replace those based upon local reference data.

These decision frameworks have not been developed for all specific indicators and issues but are presented mainly to assist water managers explore some of the ways in which the guidelines can be used in site-specific situations. Water managers and regulators are encouraged to develop their own decision trees to address any additional issues that may be encountered. General guidance on designing monitoring and assessment programs is given in Chapter 7, with additional background in the Monitoring Guidelines (ANZECC & ARMCANZ 2000).

3.1.6 Using management goals to integrate water quality assessment

In general, there is not enough scientific knowledge at present to allow anyone to make confident predictions about the way in which a particular concentration of toxicant or nutrient will affect species, habitats or ecosystems. It is therefore important to measure the characteristics of the biological components of the ecosystem as well as the physical and chemical water quality characteristics, to be able to confidently assess whether an important change has occurred or is likely to occur.

Although there is a considerable body of toxicological knowledge that is very important for use in specific circumstances, the overall effects of mixtures of toxicants on a wide variety of species or habitats are not fully understood. Environments are typically dynamic, as well as being subjected to natural stresses like storms and floods, and little is known about the highly complex internal forces that operate within them. Relatively accurate predictive models can be developed for specific ecosystems, but this generally entails sophisticated, resource-intensive programs which may not be feasible. Use of unproven or overly simplistic causal models to justify avoiding using biological indicators is dangerous.

The process of setting management goals, as outlined earlier, is useful for conceptualising the issues surrounding integration in aquatic ecosystem management. The goals should be defined in a quantitative manner, need to be comprehensively related to all valued attributes of the ecosystem, and, typically, should be biologically based. In this sense, the biological variables themselves are the management end-points, and chemical variables such as concentrations of toxicants are the proximal causes in the cause–effect relationship. Management is then directed to these management goals (such as maintaining a certain level of species diversity). All management and assessment activities are integrated by an explicit relationship to the management goals, in this case the maintenance and improvement of species diversity. Hence biological diversity, or some other valued aspect of the ecosystems, becomes the target for management and assessment, and all activities are defined and implemented in terms of management of those ecosystem attributes (Ward & Jacoby 1992).

Overall, the aim of a monitoring program should be to answer a discrete set of questions (hypotheses) which focus on whether the management goals are being achieved. Conceptual models of the important biological and physical interactions...
within the ecosystem will assist in choosing those indicators that could be potentially useful for the monitoring or assessment program. This is important because monitoring programs must be cost effective and in most circumstances it is not feasible to design and implement a program that intensively monitors all aspects of water quality.

Another important aspect of integrated water quality assessment is the development of communication networks across whole catchments to address broad-scale issues. This is essential at two levels: first, because of the interdependent nature of the environmental values themselves — the water quality of one value can potentially affect others; second, for protection of the whole aquatic ecosystem — while water quality objectives might be met in riverine ecosystems upstream, the cumulative effects of discharges and contaminant build up in depositional areas downstream (e.g. wetlands, estuaries) must also be considered when setting water quality criteria. This applies to a number of environmental values.

3.1.7 Decision criteria and trigger values

Indicators used in these Guidelines are likely to respond continuously to the intensity of a disturbance; an example is given in figure 3.1.4. At some point along this continuum, the ecosystem will be deemed to have been adversely affected and the value of the indicator at this point will be used as the criterion to make the decision that ‘the ecosystem has been impacted’.

![Graphical depiction of the relationship between indicator response and strength of disturbance, and threshold for management intervention](image)

Figure 3.1.4 Graphical depiction of the relationship between indicator response and strength of disturbance, and threshold for management intervention

In most situations, we will need to make a decision before the ecosystem becomes adversely affected so that management actions can be implemented in time to prevent the ecosystem becoming damaged. In other words, we will need to select a ‘threshold value’ of the indicator that is smaller than that which indicates that the...
ecosystem has been impaired. How much smaller this value needs to be depends on
the nature of the impact, the level of our understanding of the relationship between
changes in the indicator and ecological impact, and the lead-time necessary to
implement management actions.

For example, if the impact is likely to be irreversible or persistent then the
threshold value will need to be set at a very small value of the indicator so that
irreversible harm is avoided. Also, if there is only a very rudimentary
understanding of how a particular contaminant might affect an ecosystem then the
threshold value will need to be relatively small in case the ecosystem is more
sensitive to the contaminant than expected. Similarly, if there is a long lag between
detection that the threshold has been exceeded and implementation of some action
or decision, the threshold value will need to be set at a very small value.

Thus, the first task is to choose the threshold value for a given indicator. This is not
a trivial exercise, and requires all stakeholders to agree on these values before the
program of monitoring or assessment commences.

For the non-biological indicators in Sections 3.3–3.5, the guideline trigger values
represent the best currently-available estimates of what are thought to be
ecologically low-risk levels of these indicators for chronic (sustained) exposures.a

For these indicators, the guideline trigger values provide the starting point for
negotiations about the threshold value and criterion for a management decision (i.e.
water quality objectives). Users should also be aware that short-term intermittent
(or pulse) exposures to very high contaminant or stressor values may also need to
be managed in certain situations. Negotiating the equivalent of a guideline trigger
value for the biological indicators in Section 3.2 is more complex, because the use
of these indicators has a shorter history in Australia and New Zealand and because
these indicators nearly always need to be used in a comparative fashion (e.g.
comparing values from the site(s) of interest with those in an appropriate reference
condition). This may also be true for the non-biological indicators in situations
where a reference condition is being used to establish the water quality objectives.

Thus, for all types of indicators, there will be situations in which simple guideline
trigger values of the chosen indicator will be inadequate as a threshold value or
criterion on which to activate management decisions and actions. In these
situations, stakeholders need to negotiate an effect size, which describes how much
deviation from the reference condition is tolerable before management has to
intervene. To understand what an effect size is, stakeholders need to appreciate the
following points:

1. the values of all indicators vary naturally, and
2. not all of this variation is ecologically important.

This means that some of the changes that can potentially be detected in an indicator
may be ecologically trivial; such small changes should not initiate management
action. The situation where we conclude that an important change has happened
when, in fact it has not, is technically referred to as a Type I error.

Conversely, many indicators are very variable naturally and intensive sampling
may be essential to detect ecologically important changes in the indicator. If the
sampling intensity is too small and the important change is missed, then a Type II
error is committed.

a See Section 7.4.4
In the context of cooperative best management, stakeholders need to balance these two types of ‘error’ and negotiate these issues before the monitoring or assessment program commences.a

\subsection*{3.1.8 Guidelines for highly disturbed ecosystems}

Apparently common problems in assessing water quality for highly disturbed ecosystems of Australia and New Zealand include:

1. the difficulty in deciding upon suitable water quality guidelines and objectives (and in particular, a level of acceptable ecological change);
2. the lack of suitable reference sites or data;
3. the lack of advice and guidelines for highly disturbed ecosystems in urban regions.

These Guidelines offer the following advice and information on these issues.

\subsubsection*{3.1.8.1 Determining water quality guidelines and objectives}

As discussed in Sections 1.2 and 2.2, the philosophy espoused in the Guidelines is one of ‘continual improvement’ for places where water or sediment quality is poorer than the agreed water quality objectives. For highly-disturbed ecosystems, the water quality objectives can be seen as progressive and intermediate targets for long-term ecosystem recovery. The Guidelines offer specific advice on assessing the success of remediation programs.b

The Guidelines recommend that guideline trigger values for slightly–moderately disturbed systems also be applied to highly disturbed ecosystems wherever possible. If that is not possible, local jurisdictions and relevant stakeholders must negotiate alternative values. For this situation, the Guidelines provide less conservative trigger values for toxicants: the less conservative values suit two lower levels of ecosystem protection (table 3.4.1). The Guidelines also offer the following advice, relevant to all indicators (biological, physical and chemical, toxicants, sediments) when test data are being compared with data from reference sites:c

1. Where reference sites of high quality are available, lower levels of protection may be negotiated for the site under consideration, through selection of more relaxed statistical decision criteria. This would not necessarily, and should not, result in a water of lesser quality than that already prevailing.

2. Where no high quality reference sites are available, modified water bodies of the best environmental quality in the region serve as reference targets (or intermediate targets for ecosystem recovery). Where these data indicate that certain toxicants occur naturally at levels exceeding the guideline trigger value, the Guidelines make provision for the background level, if clearly established, to become the site-specific guideline level.

Where a reference condition is used to define water or sediment (pore water) quality targets, the bioavailable fraction must be determined and compared for those toxicants that exceed the guideline trigger values.d For sediment particulates, the dilute-acid-extractable (1M HCl) fraction is used as a surrogate for bioavailability.e
Negotiating the ‘acceptable’ level of change for disturbed ecosystems, and hence the level of protection of species, is a constant challenge faced by local jurisdictions and relevant stakeholders (including the community).

As is recognised in the Guidelines, more research is needed to develop methods to describe degrees of acceptable ecological change relative to reference conditions.\(^a\)

The Guidelines give general advice for determining the size of ecological change that would be considered important. It can be useful to examine data from existing impacts elsewhere, especially if it is possible to compare impacts across a gradient from mild to extreme. These can be used as yard-sticks to decide upon the degree of ecological change or impact.

As a first step towards improvement in water quality, the Guidelines recommend that local jurisdictions assess a range of options for determining site-specific guideline values for highly disturbed ecosystems. One approach is to select different levels of acceptable change (e.g. protection of 90% of species with 50% confidence). Another is to assess the disturbed ecosystem against the best-available reference water body in the region, as a benchmark for water quality.

Different site-specific guideline values developed using various methods can be examined and weighted according to pre-determined criteria of quality and relevance to the ecosystem. This should be done in a manner consistent with risk assessment principles,\(^b\) to arrive at an appropriate figure.

3.1.8.2 Lack of suitable reference sites or data

Often, water bodies over large continuous tracts of Australia and New Zealand are highly disturbed and none of the adjacent water bodies is necessarily of better quality than the water body(ies) of interest, insofar as serving as useful reference sites. Nevertheless, even if water bodies of only slightly better quality can be found, these provide useful reference data, particularly if these data serve as an intermediate target for ecosystem recovery.

Where the issue is biological assessment of water quality in highly-disturbed inland streams and rivers, rapid assessment using macroinvertebrate communities offers, potentially and in practice, a most useful approach.\(^c\) Recent findings from the Australian Commonwealth-funded National River Health Program from which this rapid assessment approach has been developed, indicate that macroinvertebrate communities are very similar at the family level across vast tracts of inland Australia. This means that relatively intact ecosystems in remote and less developed parts of inland Australia (e.g. channel country of south-western Queensland) may potentially provide useful reference data for highly disturbed ecosystems in, say, north-western NSW, if family-level information about macroinvertebrates serves as a suitable indicator of river health at this spatial scale.

3.1.8.3 Guidelines for highly disturbed ecosystems in urban regions

Most of the populace of Australia and New Zealand lives in large cities where most, but not all, natural aquatic ecosystems are highly disturbed. Approaches from Section 3.1.8.1 above, ‘Determining water quality guidelines and objectives’, are applicable to the development of guidelines for highly disturbed ecosystems in urban regions. Indeed, a great deal of work has been conducted in urban waterways across Australia and New Zealand and on a variety of chemical and biological monitoring and assessment programs — see box 3.1.4. Utilities in many of the

\(^a\) See section 8.5.1 in Vol. 2 and Section 7.2.3.3

\(^b\) Section 3.4.3

\(^c\) Sections 3.2, 7.2.1 and 7.3.3
smaller, and therefore less well-resourced, urban centres will be able to benefit from these larger urban programs by applying the same principles of investigation to their own situations.

Box 3.1.4 Examples of water quality assessment programs conducted in major urban regions of Australia

These are some of the existing monitoring and research programs in streams, estuaries and coastal systems in major urban centres.

For urban streams and wetlands:
- Sydney streams are monitored and studied through the Environmental Indicators program of Sydney Water Corporation, and by NSW DLWC;
- Melbourne streams are monitored and studied by Melbourne Water, VIC EPA and the CRC for Freshwater Ecology;
- a predictive model of the AUSRIVAS type for monitoring and assessing health of streams in the Hobart region has been completed by the University of Tasmania (Zoology Dept);
- wetlands of the Swan Coastal Plain.

For coastal marine areas and estuaries:
- water quality monitoring and assessment are included amongst the research programs of the Centre for Research on Ecological Impacts of Coastal Cities (Sydney University);
- Port Phillip Bay Environmental Study;
- Moreton Bay;
- programs in and around Perth, such as the Perth Coastal Water Study, South Metropolitan Coastal Water Studies, Perth Coastal Waters Management and Consultative Process.

General:
- Thirteen studies on streams and estuaries were commissioned under the Urban sub-program of the National River Health Program, covering physical, chemical and ecological aspects. Reports arising from the sub-program may be found at the LWRRDC website (http://www.lwrrdc.gov.au).
3.2 Biological assessment

3.2.1 Introduction and outline

In broad terms, this section provides advice about the selection of biological indicators to apply to various water quality problems, and the analytical procedures that should be used to monitor and assess change in these indicators. The material in this section is accompanied by little in the way of rationale or justification; those are provided in other chapters of the guidelines. Generic issues of designing a program for monitoring or assessment are given in Sections 7.1 and 7.2, with much background material provided in the *Australian Guidelines for Water Quality Monitoring and Reporting* (the Monitoring Guidelines, ANZECC & ARMCANZ 2000) (especially Chapters 3, 4 & 6). For substantiation of the recommended approaches and additional guidance, an expanded discussion about the selection of biological indicators is provided in Section 8.1 (Vol. 2), while a detailed account of specific issues for biological monitoring and assessment is provided in Section 7.3. It is important that the material presented in the current Section (3.2) is not read in isolation of these other detailed accounts.

3.2.1.1 Philosophy and approach behind bioindicators of water quality

The following sections discuss the concepts and monitoring frameworks necessary to assess aquatic biological communities. A key concept is that of ecological integrity (health), defined in Section 3.1.1.

Biological assessment (bioassessment) can measure the desired management goals for an ecosystem (e.g. maintenance of a certain diversity of fish species or certain level of nuisance algae) as might be described in the management goals. Bioassessment provides information on biological or ecological outcomes; these may result from changes in water quality but may also result from changes in the physical habitat (e.g. increased fine sediment deposition, or changes in hydrology) or from changes in biological interactions (e.g. the introduction of exotic species or diseases).

Thus, bioassessment should be seen as a vital part of assessing changes in aquatic ecosystems, and as a tool in assessing achievement of environmental values and attainment of the associated water quality objectives. At the same time, the resulting biological message provides an insight into a complex system which:

- integrates multiple natural and human changes in physico-chemical conditions;
- integrates disturbances over time;
- absorbs human effects into complex interacting biological communities and processes;
- can give a signal from more than one component (e.g. multiple species or community similarities or ecological processes).

The guidelines for biological assessment are intended to detect important departures from a relatively natural, unpolluted or undisturbed state — the reference condition. An important departure is deemed to be one in which the ecosystem shows substantial effects, including:

- changes to species richness, community composition and/or structure;
- changes in abundance and distribution of species of high conservation value or species important to the integrity of ecosystems;
• physical, chemical or biological changes to ecosystem processes.

Important in this context does not mean mere statistical significance, which is only a tool in the context of a specific monitoring design. Rather it means a change or departure deemed practically significant, in relation to previously agreed performance criteria, for failing to achieve a water quality objective.

The results of bioassessment may require interpretation using additional supporting information on water quality and physical conditions at site, catchment or regional scales. Bioassessment provides a window onto the condition of the ecosystem being managed.

Bioassessment and biological indicators have come into use because the traditional physical and chemical guidelines are too simple to be meaningful for biological communities or processes. Strong variation in ecosystem processes and biological community composition in time and space is characteristic of many surface water environments, particularly in Australia.

Biological systems are very variable. It is important to understand that because of this variability, sampling designs have a limited capacity to detect and quantify change relative to an undisturbed or reference state. Any given sample size or number of sample units taken during a monitoring or assessment program has quantifiable constraints on its capacity to detect a change of a given magnitude. There is a strong relationship between the power (in statistical terms) of a monitoring program design, the magnitude of the effect that is detectable and the sample sizes involved.

There is also a trade-off between a capacity to detect change, and the sample size, and the chance of not detecting that change (or of detecting a change that has not occurred). This trade-off is often negotiated on the basis of financial resources for monitoring programs, since to increase sample sizes or numbers of sample units is the most common way of increasing the power to detect a change.a

It is vital to recognise the need for high quality, comprehensive designs in bioassessment and biological monitoring. Protocols are being developed for bioassessment, with improved designs and rigour in site selection, sampling approaches and analysis. Several examples of this are given in the following sections on biological assessment.

\textbf{3.2.1.2 A framework for biological assessment of water quality}

Successful employment of a biological monitoring and assessment program for the protection of aquatic ecosystems involves a series of steps:

1. define the primary management aims, including the level of protection desired by the community and other stakeholders; define the management goals for achieving protection of the ecosystem, and the environmental concerns;b

2. together with a balance of indicators, identify the biological assessment objectives for protection of the water resource;c

3. select appropriate indicators and protocols to apply to the assessment objectives;d

4. select the appropriate experimental design to apply to the indicator;e
5. determine key decision criteria, i.e. acceptable level of change and statistical sensitivity with which to detect such change;\(^a\)

6. assess results from monitoring programs,\(^b\) with feedback to management.

This framework of steps is also shown in figure 3.2.1.

Figure 3.2.1 Decision tree for biological assessment of water quality
3.2.1.3 Biological assessment objectives for ecosystem protection

Having determined the level of protection required for an ecosystem, the management goals for achieving that protection, and the environmental concerns (fig 3.1.1), managers should identify assessment objectives for protection of the water resource. The objectives will help managers select the most appropriate biological indicators and protocols. Three broad assessment objectives are described as follows:

1. Broad-scale assessment of ecosystem health (at catchment, regional or larger scales)

Resources will never be adequate to provide detailed, quantitative\footnote{The adjective ‘quantitative’ from here on, in Section 3.2, refers to an indicator measurement program that permits rigorous and fair tests of the potential disturbances under consideration; typically, conventional statistical tools would be employed to attach formal probability statements to the observations — see Section 3.2.3.} biological monitoring and assessment of water quality over wide geographical areas of Australia and New Zealand. Therefore, tools for rapid biological assessment (RBA) are being developed that, while not providing detailed quantitative information, are cost-effective and quick enough to generate adequate first-pass data over large areas. The data may be adequate for management purposes or they may help managers to decide what type of further information may be required and from where.

Broad-scale assessment can be useful for the following applications:

- rapid, cost-effective and adequate first-pass determination of the extent of a problem or potential problem, e.g. as applied to broad-scale land-use issues, diffuse-source effluent discharges or information for State of Environment Reporting;
- screening of sites to identify locations needing more detailed investigation;
- remediation programs being conducted over broad geographical areas (catchment, regional or larger scales).

The most developed RBA method is AUSRIVAS, a method using macroinvertebrate communities in rivers and stream. Rapid bioassessment protocols are also being developed for riverine benthic algae (diatoms) and fish, as well as for macroinvertebrate communities in wetlands and estuarine sediments.

2. Early detection of short- or longer-term changes

Prediction and early detection of possible effects are useful to any water quality management program so that substantial and ecologically important disturbances can be avoided. Early information enhances the options for management. For example, where an effect is observed from a controlled discharge, it may be possible to adjust the rate of release or of subsequent releases.

Predictive information and early detection in the field can result if specific and sensitive programs are set up, incorporating study of sublethal responses of organisms. If sampling sites for any indicator can be located in mixing zones effectively creating spatial disturbance gradients, they will enhance early detection and predictive capabilities.\footnote{The purpose of sampling in mixing zones in this case is solely for enhancing inference about disturbances in receiving waters, not for determining compliance in this zone.}
Also, RBA programs operating over broad geographical regions may, through their extensive coverage, pin-point potential ‘hot-spots’ that would otherwise be missed. However, these programs do not incorporate very sensitive protocols.

Early detection can be important for:
- sites of special interest (e.g. sites of high conservation value, major developments and/or point-sources of particular potential concern) where the cost of failing to detect a disturbance in a timely manner may be too high;
- timely identification of water quality issues and problems that may exist over a broad geographical region in response to a specific pressure;
- any situation where a management objective has been strongly linked to the Precautionary Principle tenet of the National Strategy for Ecologically Sustainable Development (ESD Steering Committee 1992).

3. Assessment of biodiversity

Often it is not sufficient simply to have detected change in an early detection indicator because the information cannot easily be linked (if at all) to adverse effects at population, community and ecosystem levels. To determine effects upon the ecosystem as a whole and as important end-points in themselves, measures of biodiversity, including ecosystem processes and the conservation status of sites, should be key responses sought-after in monitoring programs.

Biodiversity and conservation status are best measured using species-level data gathered from quantitative studies. Information gathered at higher levels of taxonomic resolution will serve these needs if the data are correlated with biodiversity or conservation status at species level (e.g. Wright et al. 1998). Even in the best-resourced studies, it is inevitable that biodiversity assessment will usually be limited to the measurement of ecosystem surrogates — communities/assemblages of organisms, or habitat or keystone-species indicators where these have been closely linked to ecosystem-level effects. Information on the ecological importance of effects will best be met in programs that have regional coverage and encompass a full disturbance gradient.

Whether the assessment objective is biodiversity, conservation status or ecosystem-level responses for assessing ecological importance of disturbance (as measured by community structure or ecosystem process attributes), this indicator is hereafter termed biodiversity indicator.

The biodiversity assessment objective may be important for the following applications:
- for sites of special interest where indicators are needed to measure biodiversity, conservation status, and/or ecosystem-level effects for assessing ecological importance of disturbance. Information gathered for such indicators is highly complementary to that gathered for early detection indicators.
- through RBA programs, as a first-pass measure of biodiversity, conservation status and/or ecosystem-level effects for assessing ecological importance of disturbance, at sites and over a broader geographical region.
- in any situation where a management objective has been strongly linked to the Ecologically Sustainable Development tenet of the ‘Maintenance of biodiversity and ecological systems’ (National Strategy for Ecologically Sustainable Development, ESD Steering Committee 1992).
3.2.2 Matching indicators to problems

3.2.2.1 Broad classes of indicators and desired attributes

Desired or essential attributes of the broad indicator types (or methods) required to meet the assessment objectives are listed in table 3.2.1. Each of the three assessment objectives is discussed fully in Section 8.1.1 (Volume 2), but the main points are summarised below.

1. Broad-scale assessment of ecosystem ‘health’

The indicator types relevant to a broad-scale assessment objective have these attributes:

i. the measured response adequately reflects the ecological condition or integrity of a site, catchment or region (i.e. ecosystem surrogate);

ii. where community or assemblage data are gathered, these and associated environmental data can be analysed using multivariate procedures;

iii. approaches to sampling and data analysis are highly standardised;

iv. responses are measured rapidly, cheaply and with rapid turnaround of results;

v. results are readily understood by non-specialists;

vi. responses have some diagnostic value.

A range of studies of populations and communities could provide information about the ecological condition or integrity of a site, catchment or region, but only rapid biological assessment (RBA) methods would enable such information to be gathered over wide geographical areas in a standardised fashion and at relatively low cost. Resh and Jackson (1993), Lenat and Barbour (1994) and Resh et al. (1995) elaborate upon features of RBA approaches as applied to stream macroinvertebrate communities. Comment upon some RBA methods currently being applied to freshwater fish communities is provided in Section 8.1.2.1 of Volume 2.

2. Early detection of short- or longer-term changes

To have a predictive or early detection capability, an indicator should ideally have a response that is:

i. sensitive to the type of stressor;

ii. correlated with environmental effects (i.e. linked to higher-levels of biological organisation);

iii. time- and cost-effective to measure;

iv. highly constant over time and space, which confers high power to detect small changes;

v. regionally and socially relevant;

vi. broadly applicable.

These attributes are important because assessments of actual or potential disturbances will only be as effective as the indicators chosen to assess them (Cairns et al. 1993). However, the attributes are idealised characteristics only, and in many cases some will conflict or will not be achievable. Therefore the more important and achievable attributes must be decided upon, and appropriate indicators must be chosen accordingly.
<table>
<thead>
<tr>
<th>Assessment objective</th>
<th>Applications</th>
<th>Recommended indicators</th>
<th>Essential or desired attributes of the indicator to be employed</th>
</tr>
</thead>
</table>
| 1. **Broad-scale assessment of ecosystem 'health' (catchment, regional or larger scale)** | Water quality on a catchment or regional basis (e.g. SoE reporting, catchment management indicators) | Rapid bioassessment (e.g. AUSRIVAS) | • Comparative measures of biological community composition, e.g. multivariate
• Measure rapidly and cheaply, rapid turnaround of results
• Have a diagnostic value |
| | | Laboratory: Direct toxicity assessment
Field: Instream/riverside assays, biomarkers, bioaccumulation; spatial disturbance gradients in relevant quantitative biological indicators | |
| 2. **Early detection of short- or longer-term changes** | Sites of special interest (high conservation value, major developments or point-sources of particular potential concern) | Rapid bioassessment | • Sensitivity to the type of contaminant expected (and hence diagnostic value)
• Respond and measure rapidly (e.g. sublethal)
• Demonstrate a high degree of constancy in time and space (i.e. high signal:noise ratio) (field) |
| | Water quality on a regional basis in response to specific pressure | Rapid bioassessment | • As for ‘Broad scale assessment’ above |
| 3. **Biodiversity or ecosystem-level response** | Sites of special interest | Detailed quantitative, preferably regionally-comparative, investigations of communities possibly with species-level taxonomic resolution
• Direct and preferably comparative measurement of the ecosystem process of concern | • Direct measures of diversity (using species-level identification for quantitative studies), with regional comparison
• Direct measures of ecosystem function (e.g. community metabolism)
• Use of surrogate measures for ecosystem biodiversity where relationship between surrogate and biodiversity has been shown (usually community/multivariate)
• Have a diagnostic value |
| | Water quality at sites and on a regional basis | Rapid bioassessment (for biodiversity/conservation status where this has been shown to correlate well with biodiversity) | • As for ‘Assessment of biodiversity’ above |
As mentioned earlier, methods of prediction and early detection fall into two categories: 1) sub-lethal organism responses (e.g. growth, reproduction), and 2) rapid biological assessment (RBA, e.g. AUSRIVAS). The potential of these methods to meet the objective of *early* detection is discussed below.

Sub-lethal organism responses

Sub-lethal organism responses can generally be found to meet, in the same measured response, important attributes (i), (iii), (iv) and (v) above. However, there will inevitably be conflict and difficulty in meeting all six attributes. For example, an indicator with good diagnostic value for a particular stressor may not be particularly applicable to a broad range of stressors. Socially-relevant sub-lethal organism responses are also often difficult to find. A more significant limitation, however, is that in very few situations have indicators of exposure to a pollutant been correlated to environmental effects.

Rapid biological assessment (RBA)

Rapid biological assessment (or RBA) methods are applied and measured in a way that makes them poorly suited to a role of early detection. In particular, they are not designed to detect subtle disturbances so may not have desirable attributes (i) and (iv) above. Nevertheless, unlike other early detection methods, RBA procedures can be carried out at relatively low cost at a large number of sites or over large geographical areas, and will generally have greater ecological, regional and social relevance, i.e. features (ii), (iii), (v) and (vi) above. Indeed, RBA methods such as AUSRIVAS, in which site data are compared with regionally-relevant reference conditions, via a predictive model, and reported using a standard index, are particularly relevant. In their broad coverage they may also be able to locate problems and stressors that would otherwise pass unnoticed.

Sub-lethal organism responses and RBA methods combine different predictive and early detection needs, and in comprehensive monitoring programs may play highly complementary roles. Nevertheless, in a balanced program that measures both early detection and biodiversity indicators, attributes (i), (iii) and (iv) above are regarded as the most important guides to the selection of types of indicator.

3. Biodiversity assessment

The biodiversity assessment objective is similar to the broad-scale assessment objective (1) above because both provide information about the ecological condition or integrity of a site. Two important features distinguish the two objectives in practical monitoring programs: the provision of relatively detailed quantitative and accurate assessments of biodiversity indicators — but at limited spatial scales, for reasons of high cost; and the provision of less accurate first-pass assessments of broad-scale indicators — but at greater spatial scales.

Biological indicators used for broad-scale assessment can also be used for biodiversity assessment. Tradeoffs in costs, the level of accuracy and detail of information required will ultimately determine which approach is used.

Desired or essential attributes of biodiversity indicator types include features (i) and (vi) from broad-scale assessment above, as well as either (i) direct measures of diversity (using species-level identification) and/or (ii) surrogate measures for biodiversity where a relationship between surrogate and biodiversity has been shown; and (iii) direct measures of ecosystem function (e.g. community metabolism).
3.2.2 Matching indicators to problems

Box 3.2.1 A cautionary note on the use of the AUSRIVAS RBA approach for site-specific assessments

AUSRIVAS, the RBA method using stream macroinvertebrate communities, is at an intermediate stage of development. It may be limited in its ability to detect minor water quality disturbances on biota. This restriction is caused by:

- the low level of taxonomic resolution (family level) used in existing state/territory-level (large-scale) models;
- the use of presence–absence data only;
- the need to factor temporal variability into AUSRIVAS assessments using reference sites as controls.

In general, stronger inference and greater sensitivity to disturbance become more important requirements as the spatial scale of a study narrows. Therefore, for specific assessments conducted at small scales (within a catchment), AUSRIVAS should be conducted using a sampling design that offers sufficient scope (viz site selection, spatial and temporal replication) to meet the study requirements. For more reliable assessments at small scales it may be necessary to combine the data gathered for two seasons (e.g. autumn and spring) and to enter the data into the ‘combined-seasons’ models developed by many state agencies. However, some of the RBA’s ‘rapid assessment’ aspect would be lost.

These issues are expanded upon in Chapters 7 and 8.

This bioassessment approach is in a phase of ongoing development and refinement. One characteristic of that phase is the need to increase the spatial spread and density of reference sites in various regions in Australia. At present, site numbers and densities may not be sufficient to allow reliable bioassessment in some regions. (It should be noted that existing support software for AUSRIVAS models screens out any data collected from sites outside the geographic region for which the model was derived.)

While the sensitivity of AUSRIVAS for site-specific assessments is being improved, Guidelines’ users should seek updates on developments in this area to determine whether the method meets the bioassessment requirements for their particular situation and region. Such updates, including details of the geographic spread of reference sites, may be obtained from the AUSRIVAS homepage, http://ausrivas.canberra.edu.au/ausrivas.

One would expect quantitative biodiversity indicators to be restricted in application to a relatively small region, e.g. a river of interest and sites from rivers in catchments immediately adjacent. This would be less a limitation for broad-scale RBA indicators. In monitoring programs, RBA indicators would not normally be expected to provide direct measures of diversity. Further guidance on whether RBA or quantitative ‘biodiversity’ indicators (or both) are appropriate for a particular situation is provided in Section 8.1.1.3 of Volume 2.

3.2.2.2 Matching specific indicators to the problem

These Guidelines discuss several stressors, such as metals, suspended solids and/or sedimentation, salinity, herbicides and nutrients, any environmental effects of which can be identified, quantified and assessed by particular biological indicators. Viable protocols (i.e. proven or near-proven) using diatoms and algae, macrophytes, macroinvertebrates and fish populations and/or communities, together with community metabolism, have been developed for use in streams and rivers, wetlands and lakes, and estuarine and marine ecosystems to monitor and assess changes associated with these stressors. The stressors (or water quality issues) and biological indicators recommended to apply to the monitoring and assessment of
water quality are listed in table 3.2.2. Background to the development of the biological indicators, including rationale and justification, is provided in Section 8.1 of the Guidelines.

Development of protocols for the early detection of sediment toxicity using field assessment procedures is at an early stage in Australia and elsewhere. Until suitable indicators are identified and protocols for these are developed, a laboratory assessment approach is recommended (method 2A, table 3.2.2). For this, a potentially contaminated sediment from the field is brought back to the laboratory and standard sediment toxicity tests are conducted to determine its toxicity. A suitable uncontaminated sediment, collected from an adjacent control site or from the same site prior to disturbance, is tested as a reference.

3.2.3 Recommended experimental design and analysis procedures for generic protocols

It is essential that protocols permit rigorous and fair tests of the potential disturbances under consideration. The best protocols are those that have sufficient baseline data collected before as well as after a potential disturbance. There are two advantages of such protocols. Firstly, the logical basis for inferring whether or not a disturbance has occurred is stronger because the natural variation inherent in the indicator(s) is incorporated into the inference; secondly, a properly-designed testing program permits use of conventional statistical tools to attach formal probability statements to the observations.

Where such data do not exist or cannot be collected, alternative analytical procedures can be adopted. These two broad groups of procedures are outlined here and described in more detail in Section 7.2 (Table 7.2.1D).

Protocols which rely on conventional statistical procedures (Appendix 3, Volume 2) have two essential features. First, they require that baseline data be collected prior to the supposed disturbance because seasonal and inter-annual variability in the indicators need to be accounted for. Second, pre- and post-disturbance data need to be collected from both the disturbed area and from comparable undisturbed areas. These control areas provide a benchmark against which changes in the indicator in the disturbed areas can be judged. With few exceptions, the more control areas that can be incorporated into the design of the experiment or assessment, the stronger and fairer will be the test of the effect of the disturbance. The conventional statistical procedures that are used to analyse these designs belong to the family of general linear models, which includes univariate and multivariate analysis of variance, analysis of covariance and regression.

Not all situations permit the implementation of inferentially strong designs. Appropriate control areas may be limited in number or not available at all. In this case, statistical methods can be applied to data collected within appropriate designs, but the strength of the inferences that can be drawn is much weaker and there is a correspondingly higher risk of either missing a disturbance or erroneously concluding that a disturbance has occurred. Accordingly these designs should not be implemented merely as a cost-saving measure; they should only be chosen if appropriate control areas cannot be found.
Table 3.2.2 Water quality issues and recommended biological indicators for different ecosystem types: S = streams and rivers, W = wetlands, L = lakes and M = estuarine/marine. Letters or indicator in italics denote that while the indicator is not presently available, it could be developed relatively quickly with additional resourcing.

<table>
<thead>
<tr>
<th>Code</th>
<th>Issue</th>
<th>Suitable biological indicator or assessment approach</th>
<th>Protocol¹</th>
<th>Ecosystem type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A, B</td>
<td>General inorganic (including metals) and organic contaminants: Early detection of short- or longer-term changes from substances in solution/water column</td>
<td>1A Instream/riverside assays measuring sublethal ‘whole-body’ responses of invertebrate and/or fish species; 1B Biomarkers (chemical/biochemical changes in an organism) Direct toxicity assessment</td>
<td>1A(i), (ii) S, W, L, M</td>
<td>1B(i), (ii) S, W, L, M sec 8.3.6 (Vol 2)</td>
</tr>
<tr>
<td>2A, B</td>
<td>General inorganic (including metals) and organic contaminants: Early detection of short- or longer-term changes from substances deposited (sediments)</td>
<td>2A ‘Whole-sediment’ laboratory toxicity assessment (where sediment tests are available) 2B Bioaccumulation/biomarkers (for organisms that feed through ingestion of sediment); other sublethal incl. behavioural responses where protocols developed</td>
<td>2A sec 8.3.6 2B(i), (ii)</td>
<td>S, W, L, M</td>
</tr>
<tr>
<td>3</td>
<td>General inorganic (including metals) and organic contaminants: Changes to biodiversity and/or ecosystem processes</td>
<td>Structure of macroinvertebrate and/or fish populations²-⁵/communities³ using rapid, broadscale (RBA⁴) or quantitative (Q) methods Stream community metabolism</td>
<td>3A(i)–(v) S, W</td>
<td>3B</td>
</tr>
<tr>
<td>4</td>
<td>Suspended solids in the water column</td>
<td>Structure of macroinvertebrate and/or fish populations²/communities using RBA⁴ or Q methods Seagrass depth distribution</td>
<td>3A(i)–(v) S</td>
<td>6 M</td>
</tr>
<tr>
<td>5</td>
<td>Sedimentation of river bed</td>
<td>As for 4 as well as stream community metabolism</td>
<td>3A(i)–(v), 3B</td>
<td>S</td>
</tr>
<tr>
<td>6</td>
<td>Effects of organotins</td>
<td>Imposex in marine gastropods</td>
<td>9</td>
<td>M</td>
</tr>
<tr>
<td>7</td>
<td>Salinity: Changes to biodiversity</td>
<td>Structure of macroinvertebrate and/or fish populations²-⁵/communities³ (RBA⁴ or Q methods); remote sensing (changes to vegetation structure):</td>
<td>3A(i)–(v), 5</td>
<td>W, S?</td>
</tr>
<tr>
<td>8</td>
<td>Herbicide inputs: Changes to biodiversity</td>
<td>Structure of phytoplankton or benthic algal communities; remote sensing (changes to vegetation structure).</td>
<td>4(i), (ii), 5 W, S</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Nutrient inputs: Early detection of short- or longer-term changes from substances deposited or in solution/water column</td>
<td>Structure and/or biomass of benthic algal or phytoplankton communities Stream community metabolism</td>
<td>4(i)–(iii) S, W</td>
<td>3B S</td>
</tr>
<tr>
<td>10</td>
<td>Nutrient inputs: Changes to biodiversity and/or ecosystem processes</td>
<td>Structure and or biomass of phytoplankton, benthic algal and/or macroinvertebrate populations²/communities (Q or RBA⁴) Stream community metabolism</td>
<td>3A(i)–(v), 4(i), (ii) S, W</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Nutrient inputs</td>
<td>11a Seagrass depth distribution 11b Frequency of algal blooms 11c Density of capitellids 11d In-water light climate 11e Filter feeder densities 11f Sediment nutrient status 11g Coral reef trophic status</td>
<td>6 7 8</td>
<td>M M M</td>
</tr>
<tr>
<td>12</td>
<td>General effluents (non-specific) and effects of hypoxia</td>
<td>Structure of macroinvertebrate communities (Q or RBA⁴)</td>
<td>3A(i), (ii) S, W</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Broad-scale assessment of ecosystem ‘health’ (non-specific degradation)</td>
<td>13A Composition of macroinvertebrate communities using RBA methods 13B Habitat distributions 13C Assemblage distributions</td>
<td>3A(i), (ii) S, W</td>
<td>M M</td>
</tr>
</tbody>
</table>

¹ The codes listed in this column refer to protocols that are listed by title in Section 8.1.3 of Volume 2. Summary descriptions of these protocols, with references to important source documents, are provided in Appendix 3, Volume 2. Populations could serve as biodiversity surrogates if a ‘keystone’ role could be established for a species. 3. For pesticides, study of non-target organisms. 4. Cautionary notes on use of RBA methods for site-specific assessments are provided in various sections of these Guidelines.
With some indicators, such as certain highly specific chemical and biochemical markers, it is possible to use designs that need only limited controls in time or space or no controls at all. However, there must be conclusive evidence that such indicators are unequivocally related to the disturbance before such designs are adopted.

For some situations, a disturbance may have occurred and there are no pre-disturbance data. Alternatively, a development may proceed with insufficient, if any, baseline data. In these circumstances, the rigour of any inferences about the disturbance is severely curtailed; the sometimes novel analytical procedures that have been applied to such data do not compensate for the lack of pre-disturbance data. Where multiple control areas are available, they can be used to describe how atypical the potentially disturbed areas appear. These procedures require the user to assume that the indicator responded similarly in control and disturbance areas before the disturbance. Where multiple control areas are not available, questions are often framed around the extent of the disturbance. As discussed below, under these circumstances it is best that data be collected from a comparatively larger number of disturbance sites than would otherwise be gathered (e.g. along a mixing zone gradient), so that stronger inferences may be drawn about disturbance by way of disturbance gradients. Such additional data may also enhance predictive capabilities of monitoring programs.

For all these procedures it is necessary to collect and collate exploratory data. The aim is to define the spatial and temporal extent of sampling and to identify and choose sampling locations within the control and disturbance areas. Such exercises can include use of simulation or other predictive tools to model currents or sediment movements, and/or be new or pre-existing data on the flora or fauna. It is difficult to prescribe protocols for exploratory collections because the amount of pre-existing data or auxiliary models will vary from case to case. In novel or unfamiliar situations such exploratory collections are even more desirable and could lead to substantial savings in time and costs.

Table 3.2.3 summarises the designs that apply to the protocols listed in table 3.2.2. The BACI class of design uses conventional statistical procedures while designs using alternative analytical procedures must be applied if inference is based on temporal change only or spatial pattern alone.

Preferred designs using conventional statistical procedures involve both pre-disturbance baseline data and multiple control areas (MBACI and ‘Beyond-BACI’ designs of table 3.2.3). Where pre-disturbance baseline data are available or can be collected, but only a single control site can be found, BACIP designs are appropriate. Designs where the length of pre-disturbance baseline and/or the number of control areas are reduced (e.g. BACI) have less inferential rigour because more assumptions need to be made about the similarity of the behaviour of the indicator in control and disturbance areas prior to the onset of the potential disturbance.

It is important to consider using any descriptive and exploratory analytical tools that would enhance interpretation of the analytical procedures employed. These might include graphs and plots accompanying univariate and multivariate approaches, clear tabulations of relevant descriptive statistics in univariate analyses (e.g. means and confidence intervals), and ordination and classification of data in multivariate studies. Some of the specific requirements of biological indicators that need to be considered while designing the monitoring program are detailed in Section 7.3.
3.2.4 Guidelines for determining an unacceptable level of change

Table 3.2.3

Experimental design and analysis procedures to apply to generic protocols. The letters used to identify the broad categories of design are those used in figure 7.2.1. Explanations of the possible designs and references are supplied in Section 7.2.3. Letters and numerals in the protocol column correspond to those used in Table 3.2.2 and Section 8.1.3 (Volume 2).

<table>
<thead>
<tr>
<th>Broad category of design (from Section 7.2.2)</th>
<th>Possible designs (Described in table 7.2.1)</th>
<th>Protocol (from Section 8.1.3, Vol 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Inference based on the BACI (Before, After, Control, Impact) family of designs</td>
<td>MBACI</td>
<td>All protocols wherever possible</td>
</tr>
<tr>
<td></td>
<td>Modifications (e.g. MBACIP, inclusion of covariates)</td>
<td>Any protocol if applicable</td>
</tr>
<tr>
<td></td>
<td>‘Beyond BACI’ designs</td>
<td>Any protocol if applicable.</td>
</tr>
<tr>
<td></td>
<td>BACIP (single control site)</td>
<td>1A, 1B</td>
</tr>
<tr>
<td></td>
<td>Modifications to BACIP</td>
<td>1A, 1B</td>
</tr>
<tr>
<td></td>
<td>Simple BACI</td>
<td>1B</td>
</tr>
<tr>
<td>B. Inference based on temporal change alone</td>
<td>Intervention analysis</td>
<td>1B, 2B, 3B, 4, 6, 7, 8. Possibly 3A(ii) but may prove very expensive; behaviour of 3A(i) in face of temporal variations unknown and not recommended for this protocol</td>
</tr>
<tr>
<td></td>
<td>Trend analysis</td>
<td>1B, 2B, 3B, 4, 6, 7, 8. Possibly 3A(ii) but may prove very expensive; behaviour of 3A(i) in face of temporal variations unknown and not recommended for this protocol</td>
</tr>
<tr>
<td></td>
<td>A posteriori sampling</td>
<td>Possibly 1B, 2B, but only if chemical or toxicant is unequivocally related to the effluent</td>
</tr>
<tr>
<td>C. Inference based on spatial pattern alone</td>
<td>Conventional statistical designs (e.g. ANOVA, ANCOVA)</td>
<td>Any protocol based on univariate indicator e.g. 1B, 2B, 3B, 4(i)A, 4(ii), 4(iii)A, 6, 8, 9.</td>
</tr>
<tr>
<td></td>
<td>Analysis of ‘disturbance gradients’</td>
<td>Any protocol if applicable; may be too cumbersome for 1A</td>
</tr>
<tr>
<td></td>
<td>Predictive models based on spatial controls only</td>
<td>3A(i), 3A(ii)</td>
</tr>
</tbody>
</table>

3.2.4 Guidelines for determining an unacceptable level of change

3.2.4.1 Inferences, assessment of change, setting decision criteria

A priori decisions made between stakeholders (e.g. developer and regulator) about effect size and the probability of making a Type I error (α) and Type II error (β) (generally only ‘effect size’ needs to be decided upon for RBA) are an essential aspect of the guidelines philosophy. These decision criteria should be pre-established in the following four scenarios: for flexible decision-making; for compliance assessment; when there are multiple lines of evidence; and when data are to be assessed against predictive models.

1. Flexible decisions in the spirit of cooperative best practice

Flexible decisions are important where adherence to a precautionary approach has been agreed or stipulated by a regulatory authority or dictated by legislation. Adequate baseline data should be collected according to the design criteria discussed above, given any unavoidable constraints. Integral to design considerations is the principle that monitoring should provide a strong basis for management response (through decisions and/or action) to any early indications of adverse disturbances. The decisions about the criteria and about responsive action by management should
be made *a priori*, especially where a superficially positive response might result from the early stages of an abnormal, and therefore undesired, change in environmental conditions; e.g. increased taxonomic richness accompanying a slight increase in eutrophication. Management intervention will depend on the management objective(s) for the receiving waters, but two approaches are possible.

i. Management could make ‘super-precautionary’ responses, dictated by any statistically significant trend from baseline of a magnitude agreed *a priori* to be important. The probability criteria for statistical significance would be determined under the flexible decision regime proposed by Mapstone (1995, 1996), with the result that α and β would be variable and determined from time to time on the basis of the available data and the critical effect size agreed *a priori*. The emphasis is on setting values for critical effect sizes that would be expected to trigger an early management response to a potential disturbance. It is assumed that it is more important to react quickly to potential problems, even though the response would be to something which had not yet become a major ecological threat. Such a position would be appropriate for activities in particularly sensitive or valuable areas. The precision with which one could specify the location of the baseline reference point would depend on the amount of sampling during the baseline period. Increasing the precision with which the reference point is specified, which would presumably also mean increasing the precision of sampling after the start of a development, would reduce the risk of responding to an erroneous trigger caused by early indications of a shift from baseline conditions. Thus, it becomes to everyone’s advantage to seek thorough monitoring.

ii. Management response could be triggered by ongoing feedback or a continuously monitored variable exceeding some threshold value. Control charting techniques such as those used in quality assurance/quality control programs might be employed here. The trigger value for a particular variable might represent a level at which that variable is known to have important biological consequences, or might simply be a statistical parameter used to indicate that an observed event would be considered an outlier under normal circumstances and therefore is worthy of further investigation. As in (i) above, it is important that all parties have agreed *a priori* to intervene when that trigger occurs.

2. Compliance, legal framework: data gathered under strict and rigorous hypothesis-testing framework

In this case, the criteria to which sampling programs are designed are set independently of the particular activity being monitored. Such criteria would not normally be subject to negotiations between regulators and proponents or other interested parties. These external criteria are the reference points that, if exceeded, will trigger action. In these cases, negotiations between regulators, interest groups, and proponents focus on the degree of risk involved in either failing to confidently recognise that the standard has been violated (β) or that apparent violations will be flagged in error (α). As in (i) from Section 3.2.4.1/1 above, the thoroughness of sampling design will directly influence the likelihood of erroneous decisions.
3. Data gathered from multiple lines of evidence, where statistical power for each indicator may be poor (lack of adequate temporal baseline)

For situations where there is a paucity of baseline information and/or adequate spatial controls, it is recommended that users adopt a ‘weight-of-evidence’ approach (Suter 1996) to inference. The process is based on risk assessment principles and draws on epidemiological precepts in interpreting test results; the concept in various forms has been described by Hodson (1990), Stewart-Oaten (1993) and Suter (1996), amongst others, with examples. There is an onus on those conducting monitoring programs under these situations to enhance the set of monitoring techniques used: it should include chemical monitoring, spatial gradients for a number of biological monitoring protocols, and toxicological and other experimental data in which concordance is sought between field results and controlled experimental findings. In this way, lack of baseline information may be at least partially compensated for, so that conclusions can be confidently drawn and, importantly, agreed upon by all parties.

4. Data assessed against bands of AUSRIVAS predictive models

Two complementary indices summarise the outputs from the analysis of AUSRIVAS data:

i. \(O/E \) Family — the ratio of the number of families of macroinvertebrates at a site to the number of families expected (predicted) at that site. (The expected number of families is actually the sum of the probabilities of each taxon occurring at the site as calculated from the model.)

ii. \(O/E \) SIGNAL which is the ratio of the observed SIGNAL\(^{10}\) value for a site to the expected SIGNAL value. SIGNAL assigns a grade to each family based on its sensitivity to pollution. The sum of the grades is divided by the number of families involved to give an average grade for the site. A grade of 10 represents high sensitivity to pollution, while a grade of 1 represents high tolerance of pollution.

The values of both indices can range from a minimum of 0 (indicating that none of the families expected at a site were actually found at that site) to a theoretical maximum of 1.0, indicating a perfect match between the families expected and those that were found. In practice, the maximum can exceed 1.0 indicating that more families were found at that site than were predicted by the model. This can indicate an unusually diverse site, but could also indicate mild enrichment by organic pollution where the added nutrients have allowed families not normally found in that site to establish. Conversely, an undisturbed, high-quality site may score an index value less than 1.0 because of chance exclusions of families during sampling.

For reporting, the value of each index is divided into categories or bands. The width of the bands is based on the distribution of index values for the reference sites in a particular model. The width of the reference band, labelled ‘A’ in table 3.2.4, is centred on the value 1.0 and includes the central 80% of the reference sites. Any site with index within the 10% and 90% bounds around 1.0 is allocated to band A and is described as being of ‘reference condition’. A site with an index value exceeding the upper bound of these values (i.e. the index value is greater than the 90th percentile of

\(\text{SIGNAL} \) is a biotic index, Stream Invertebrate Grade Number — Average Level; see Section 8.1.2.1 and Chessman (1995).
the reference sites) is judged to be richer than the reference condition, and is allocated to ‘band X’. A site whose index value falls below the lower bound (i.e. the index value is smaller than the 10th percentile of the reference sites) is judged to have fewer families and/or a lower SIGNAL score than expected and is allocated to one of the lower bands according to its value. The widths of bands B and C are the same as the width of band A, the reference band. The band D may be narrower than these, depending on variability in the index values of the reference sites in the model. In most cases, sites falling in band D on either index are severely depleted in terms of the number of families expected.

In many cases the values of the indices will allocate a site to the same band. In situations where the two indices differ in band allocation, the site will be allocated to lower of the two bands if the index value is below reference condition, or to the above reference band if one of the indices places the site in band X.

These factors should be taken into consideration by stakeholders and management who are setting situation-specific guidelines.

Table 3.2.4 Division of AUSRIVAS O/E indices into bands or categories for reporting. The names of the bands refer to the relationship of the index value to the reference condition (band A). For each index, the verbal interpretation of the band is stated first, followed by likely causes (dot-points).

<table>
<thead>
<tr>
<th>Band label</th>
<th>Band name</th>
<th>O/E Families</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Richer than reference</td>
<td>More families found than expected.</td>
<td>Greater SIGNAL value than expected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential biodiversity ‘hot-spot’</td>
<td>• Potential biodiversity ‘hot-spot’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mild organic enrichment</td>
<td>• Differential loss of pollution-tolerant taxa (potential disturbance unrelated to water quality)</td>
</tr>
<tr>
<td>A</td>
<td>Reference</td>
<td>Index value within range of central 80% of reference sites</td>
<td>Index value within range of central 80% of reference sites</td>
</tr>
<tr>
<td>B</td>
<td>Below reference</td>
<td>Fewer families than expected</td>
<td>Lower SIGNAL value than expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential disturbance either to water quality or habitat quality or both resulting in a loss of families</td>
<td>• Differential loss of pollution-sensitive families</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Potential disturbance to water quality</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Well below reference</td>
<td>Many fewer families than expected</td>
<td>Much lower SIGNAL value than expected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Loss of families due to substantial disturbance to water and/or habitat quality</td>
<td>• Most expected families that are sensitive to pollution have been lost</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Substantial disturbance to water quality</td>
</tr>
<tr>
<td>D</td>
<td>Impoverished</td>
<td>Few of the expected families remain</td>
<td>Very low SIGNAL value</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Severe disturbance</td>
<td>• Only hardy, pollution-tolerant families remain</td>
</tr>
</tbody>
</table>
It should be noted that the calculation of indices and allocation to a band for a stream site are automatically performed as part of the AUSRIVAS procedure by the AUSRIVAS software package. This software, downloaded over the internet (website address: http://ausrivas.canberra.edu.au/ausrivas) performs all calculations required for performing an RBA AUSRIVAS bioassessment of a site’s macroinvertebrate community. Further documentation is provided via the AUSRIVAS homepage, as well as additional aids in diagnosing the disturbance at a site, depending upon the band in which it falls.

3.2.4.2 Situation-dependent guidelines

The following subsections provide guidelines for protection of each of the three ecosystem conditions listed in Section 3.1, i.e. condition 1 ecosystems, of high conservation/ecological value; condition 2, slightly to moderately disturbed systems; and condition 3, highly disturbed systems. For condition 1 and condition 2 ecosystems, management involves tracking the intrinsic attributes of the ecosystems (the key structural and functional components) to ensure they do not deviate outside natural variability as determined from baseline knowledge or accruing knowledge. For any of the ecosystem conditions, local jurisdictions could negotiate site-specific guidelines alternative to those recommended below after considering site-specific factors.

a See section 3.1.3.3

b Section 7.2.1

c App. 3, Vol. 2 for protocols

d Section 3.2.4.2/4

1. Sites of high conservation value (condition 1 ecosystems)

For most applications using bioindicators in Australia, there is insufficient information about ecosystems upon which to make informed judgments about an acceptable level of change. All stakeholders (e.g. developer and regulator) are strongly encouraged to adopt the following strategy towards determining appropriate guidelines for indicator responses: first, for collecting baseline data; then, detecting and assessing environmental impacts.

Baseline data collection

Using an appropriate statistical design for the indicator response as prescribed in the protocols, parties should ensure an ‘adequate’ baseline is gathered for the indicators measured. This may be achieved by setting ‘conservative’ α, β and effect size, where the effect size is determined on the basis of statistical or other criteria. In the absence of clear information from which to set decision criteria, it is recommended default targets for ecologically conservative decisions be set at $\alpha = 0.1$, $\beta = 0.2$ (power of 0.8) and effect size = 10% of, or 1 SD about, the baseline mean, whichever is smaller. Whether these defaults are applied or not, the importance of sound and numerous baseline data cannot be over-emphasised. It is strongly recommended that baseline data be gathered from at least 3–5 control or reference locations (for biodiversity indicators at least) over a period of at least three years (all indicators) wherever possible. (See case study presented in Appendix 4, Vol 2, and Section 7.2 for rationale, justification and further discussion.) Guidelines are provided below for those situations in which it is not possible to meet these baseline requirements.

The default guidelines for α, β, and effect size, from above, should not be simply accepted as a new convention (or dogma), but should be seen as the starting point for considering (and negotiating) what is appropriate or reasonable for each case. The setting of effect size should be an active and explicit decision, usually made on a
case-by-case basis. Mapstone (1995, 1996), for example, provides additional case studies describing the setting of statistical decision criteria. For some situations an effect size as small as 10% is achievable and deemed necessary. For many others of the variables typically encountered in environmental work, it will be very difficult to detect changes of 10% or less about some mean, and perhaps impossible. In some cases, changes of 10% might be inconsequential, even in terms of an early warning system. Seeking to enforce monitoring to arbitrary decision criteria under such circumstances could result in a strong backlash against the principle of setting decision criteria a priori. However, relaxation of precautionary values should always be a clearly argued and thoroughly justified step. If insufficient information exists to justify such changes but nominated monitoring variables cannot be sampled rigorously enough to satisfy default criteria, then other candidate variables should be investigated as the mainstays for inferential decisions.

It is not always sensible to set an effect size of 10% (or some other value) of the time-averaged baseline mean. In some cases it may be necessary to stipulate an effect size that reflects the dynamics of the control sites and how they are related to the disturbance site during baseline monitoring. For example, say the measurement variable has a seasonal periodicity but the future disturbance site and control sites show different responses to seasonality. Then it would be necessary to model that knowledge into the effect size. At its simplest, this might mean having different effect sizes for tests in summer and winter.

The baseline data referred to above are for use in determining if change has occurred. Much of the information used for environmental impact assessments (EIAs) is required for ecosystem characterisation and impact prediction and whilst not ‘baseline’ in the statistically rigorous sense described above, should be adequate as pilot data to design monitoring programs used for impact detection. Once an environmental impact statement (EIS) is accepted and a development proposal is approved, either development should be delayed, or there should be a guarantee that no disturbance to aquatic ecosystems would occur, until adequate baseline are gathered. (Humphrey et al. (1999) are critical of aspects of the EIA process in Australia at least, in that too often developments proceed without adequate baseline data gathered to detect and assess potential disturbances.)

Detecting and assessing disturbances
The guidelines for detecting and assessing environmental impacts or disturbances are determined from a priori decisions made between all parties. In the case of flexible decision-making in the spirit of cooperative best practice, intervention can be either (i) ‘super-precautionary’, sought once any apparent trend away from a baseline appears, or (ii) sought once a feedback ‘trigger’ or threshold has been reached. In the first of these two situations, management action may or may not be required when a ‘positive’ response is detected. The proponent/discharger may also wish to corroborate the results for an indicator with water chemistry data and data obtained for other biological indicators.

Alternatively, data may be being gathered for compliance assessment within a legal framework, under strict and rigorous hypothesis-testing. Here, using the default settings from (i) above, unless all parties have determined other values a priori, an unacceptable disturbance has occurred if $P < 0.1$ in the statistical test applied to the data.
It is strongly recommended that parties adopt a precautionary approach and respond wisely and in a timely manner to data gathered for 'early detection' indicators.

2. Slightly to moderately disturbed systems (condition 2 ecosystems)

Treat condition 2 ecosystems like condition 1 ecosystems\(^a\) acknowledging that there may be negotiated deviations from default values prescribed for condition 1 ecosystems. Nevertheless, any decisions on effect size should be based on sound ecological principles of sustainability rather than arbitrary relaxation of the default values described above, or because of resource constraints.

3. Highly disturbed systems (condition 3 ecosystems)

The philosophy of the Guidelines for these systems is that at worst, water quality is maintained. Ideally, the longer-term aim is towards improved water quality.

Normally, early detection indicators of sublethal toxicity would not be measured at these sites.\(^b\) For these sites, any decisions on effect size can be arbitrary relaxations of the default values described above, although they should still be based on sound ecological principles of sustainability. Guidelines from 3.2.4.2/5 below should be applied for cases in which a rapid, broad-scale biodiversity indicator has been selected. Where rapid assessment methods are applied to small-scale problems (within a catchment), assessment of results must take into account the general inability of the methods to detect all but large water quality problems. Approaches recommended to enhance the general sensitivity of the methods are discussed in box 3.2.1 and in Section 7.3.3.

4. Sites where an insufficient baseline sampling period is available to meet key default guideline decision criteria

To compensate for an inability to gather sufficient baseline data, the Guidelines recommend that additional monitoring be carried out, including a greater number of indicators and/or sites for 'early detection' and biodiversity measurement (i.e. the 'multiple lines of evidence' concept\(^c\)). Of course, resource constraints will limit the number of additional indicators and sites that can be monitored, but these resource constraints must be satisfactorily balanced with the need for unambiguous and meaningful results.

For a development that is in the planning stage, if there are inadequate baseline data against which to assess disturbance, it is recommended that data from all monitoring programs be submitted to an independent expert (or panel of experts) on a regular basis for assessment of acceptability. The same ethos of precaution and ecological sustainability, as applied to guidelines in other situations listed here, would influence the decisions made by the experts.

For existing developments for which adequate baseline data were never gathered, the project approval phase probably pre-dated the more stringent discharge licensing conditions that have subsequently been imposed by regulators. Apply the same procedures as for (i) from above.

For \textit{a posteriori} monitoring of accidental discharges, continue monitoring until target indicator goals have been reached, as determined by an independent expert (or panel of experts).\(^d\)

\(^{a}\) See Section 3.2.4.2/1

\(^{b}\) Section 7.2.1.1/3

\(^{c}\) Section 3.2.4.1

\(^{d}\) Section 3.2.5
5. *Broad-scale assessment of ecosystem health*

Broad-scale assessments of ecosystem health are used to assess water quality for planning purposes, to set goals for remediation and rehabilitation programs, and to monitor and assess broad-scale disturbances such as diffuse pollution.

If a site is found to be below reference condition on the AUSRIVAS banding scheme (band B or lower), then it can be concluded that fewer invertebrate taxa have been found than would be expected on the basis of the particular AUSRIVAS model. A goal of subsequent management should be to improve the water and habitat quality so as to move the site indices closer to reference conditions or into band A.

If a site is found to be above reference condition on the AUSRIVAS banding scheme (band X), then further investigations are needed. The site may be naturally more diverse than surrounding reference sites, and therefore warrants special management to conserve that diversity. Alternatively, a naturally nutrient-poor site has received organic or nutrient enrichment with successful establishment of families of macroinvertebrates that would ordinarily not inhabit this site.\(^a\)

3.2.5 Assessing the success of remedial actions

For aquatic ecosystems long degraded by human disturbances in Australia and New Zealand, biological monitoring will be required to assess the success of remedial works put in place to improve water quality and ecological condition. The goals for remediation might be either restoration or rehabilitation. Restoration refers to attempts to restore an ecosystem to its configuration prior to the disturbance or disturbance. Rehabilitation refers to attempts to improve the ecological status of some attributes of a disturbed ecosystem. The expected management target would be improvement in the ecological condition or integrity of a site (or sites) and specific biodiversity indicators could be selected for the water quality problem identified.\(^b\)

Invariably in these situations, there are no pre-disturbance data available to define a target ecological condition, and because of this the scope for applying formal statistical methods of inference is reduced.\(^c\) The ecological target should then be assumed to resemble that of appropriate control locations, where these are available. The assumption being made in this process is that the indicator responded similarly in the control and disturbance areas before the disturbance. Simple hypotheses may be generated for these cases that test for likely indications of improvement. In all likelihood, there are too few data and too many uncertainties for formal statistical decision criteria\(^d\) to be applied. Rather, monitoring is continued until target indicator goals have been reached. Expert panels can decide upon the goals and, if necessary, decide whether compliance has been achieved. In determining goals for rehabilitation or restoration, stakeholders and their consultants need to take into consideration the desired target ecosystem condition \(^e\) as well as experience elsewhere in achieving biological recovery for the types of contaminants involved.\(^f\)
3.3 Physical and chemical stressors

3.3.1 Introduction

A number of naturally-occurring physical and chemical stressors can cause serious degradation of aquatic ecosystems when ambient values are too high and/or too low. In this section, the following physical and chemical stressors are considered: nutrients, biodegradable organic matter, dissolved oxygen, turbidity, suspended particulate matter (SPM), temperature, salinity, pH and changes in flow regime. Other chemical stressors, such as ammonia, cyanide, heavy metals, biocides and other toxic organic compounds, are covered in Sections 3.4 and 3.5. Recommendations relating to the development of guidelines for the stressors not covered in these Guidelines (e.g. introduced species and habitat modifications) are contained in Section 8.5.2 of Volume 2.

The purpose of the guidelines provided in this section is to assist those involved in managing water resources to ensure that condition 2 (slightly to moderately disturbed) and condition 3 (highly disturbed) aquatic ecosystems are adequately protected. For ecosystems requiring the highest level of protection (condition 1), the objective of water quality management is to ensure that there is no detectable change (beyond natural variability) in the levels of the physical and chemical stressors. For such highly-valued ecosystems, the statistical decision criteria for detecting any change should be ecologically conservative and based on sound ecological principles. This position should only be relaxed where there is considerable biological assessment data showing that such changes will not affect biological diversity in the system.

Figure 3.3.1 is a flow chart of the steps involved in the detailed application of the guidelines for the physical and chemical stressors using risk-based ‘guideline packages’.

The steps consist of selecting key stressors, then guideline trigger values, and then, where appropriate, a protocol for considering the effect of ecosystem-specific modifiers in reducing the biological effects of individual stressors. The steps are discussed in detail in this section.

The new approach for physical and chemical stressors recommended here differs from that in the 1992 ANZECC Water Quality Guidelines (ANZECC 1992) in a number of ways, the most significant being that:

- the guidelines are as specific as possible to each ecosystem. While not all of the required information is available yet, a start has been made by increasing the number of ecosystem types from two in the 1992 ANZECC Guidelines to six in these Guidelines.
- the focus here is on providing issue-based information, aimed at protecting aquatic ecosystems from eight issues or problems caused by physical and chemical stressors.
- available biological effects data have been used to determine low-risk guideline trigger values for toxic stressors for each ecosystem-type where sufficient data exist — i.e. a risk-based approach. For non-toxic stressors, low-risk guideline trigger values for key performance indicators have been determined by comparison with suitable reference ecosystems.
for each issue, the Guidelines give guideline packages (which are also risk-based) rather than simplistic threshold numbers for single indicators. These packages consist of key performance indicators, guideline trigger values and, where appropriate, a protocol for considering the effect of ecosystem-specific modifiers in reducing the biological effects. The packages help managers estimate whether low, possible or high risk exists at their sites as well as providing them with a means of refining guideline trigger values. The steps involved in applying the guideline packages are summarised in figure 3.3.1.

guidelines for each issue are generally specified as concentrations, although it is recommended that load-based guidelines be developed for nutrients, biodegradable organic matter and suspended particulate matter.

The remainder of this section is divided into two parts: Section 3.3.2 outlines the philosophy adopted in developing guidelines for physical and chemical stressors, while Section 3.3.3 covers the detailed guideline packages for each of the eight issues considered.

Figure 3.3.1 Decision tree framework (‘guideline packages’) for assessing the physico-chemical stressors in ambient waters

- Local biological effects data and some types of reference data (section 3.1.5) generally not required in the decision trees
- Possible refinement of trigger value after regular monitoring (section 3.1.5)
- Further investigations are not mandatory; users may opt to proceed to management/remedial action
3.3.2 Philosophy used in developing guidelines for physical and chemical stressors

3.3.2.1 Types of physical and chemical stressors

Physical and chemical stressors can be classified broadly into two types (fig 3.3.2) depending on whether they have direct or indirect effects on the ecosystem.

Direct effects

Two types of physical and chemical stressors that directly affect aquatic ecosystems can be distinguished: those that are directly toxic to biota, and those that, while not directly toxic, can result in adverse changes to the ecosystem (e.g. to its biological diversity or its usefulness to humans). Excessive amounts of direct-effect stressors cause problems, but some of the elements and compounds covered here are essential at low concentrations for the effective functioning of the biota — nutrients such as phosphorus and nitrogen, and heavy metals such as copper and zinc, for example.

![Types of physical and chemical stressors diagram](image)

The trigger values of toxic stressors are generally determined from laboratory ecotoxicity tests conducted on a range of sensitive aquatic plant and animal species. However, salinity, pH and temperature are three toxic direct-effect stressors that are naturally very variable among and within ecosystem types and seasonally, and natural biological communities are adapted to the site-specific conditions. This suggests that trigger values for these three stressors may need to be based on site-specific biological effects data.

Examples of non-toxic direct-effect stressors include:

- nutrients, that can result in excessive algal growth and cyanobacterial blooms;
- suspended particulate matter, that can reduce light penetration into a waterbody and result in reduced primary production, possible deleterious effects on
phytoplankton, macrophytes and seagrasses, or smother benthic organisms and their habitats;
• organic matter decay processes, that can significantly reduce the dissolved oxygen concentration and cause death of aquatic organisms, particularly fish;
• water flow, which can significantly affect the amount and type of habitats present in a river or stream.

Indirect effects

Indirect stressors (or factors) are those that, while not directly affecting the biota, can affect other stressors making them more or less toxic. For example, dissolved oxygen can influence redox conditions and influence the uptake or release of nutrients by sediments. Equally, pH, dissolved organic carbon (DOC) and suspended particulate matter can have a major effect on the bioavailable concentrations of most heavy metals.

Through the risk-based decision trees, managers will consider these indirect stressors, with ecosystem-specific modifying factors, during the assessment of each issue. Although many effects of these modifying factors are reasonably well known from a theoretical viewpoint, there are few quantitative relationships (or models) that allow them to be used to develop more ecosystem-specific guidelines (Schnoor 1996). Recommendations made in Section 8.5.2 (Volume 2) cover the type of research and development needed to develop these relationships.

For both types of physical and chemical stressors (eliciting direct or indirect effects on the ecosystem) background information is provided in Section 8.2.1 by way of Fact Sheets. Key indicators provided in the Fact Sheets are nutrients, dissolved oxygen, turbidity and suspended particulate matter, salinity, temperature, optical properties, environmental flows and hydrodynamics.

3.3.2.2 Issues affecting aquatic ecosystems that are controlled by the physical and chemical stressors

Many aquatic ecosystems experience a range of problems that affect biodiversity or ecological health. These problems mostly result from human activities.

This section focuses on the development of guideline ‘packages’ to address the specific issues likely to result from physical and chemical stressors:

• nuisance growth of aquatic plants (eutrophication);
• lack of dissolved oxygen (DO; asphyxiation of respiring organisms);
• excess suspended particulate matter (SPM; smothering of benthic organisms, inhibition of primary production);
• unnatural change in salinity (change in biological diversity);
• unnatural change in temperature (change in biological diversity);
• unnatural change in pH (change in biological diversity);
• poor optical properties of waterbodies (reduction in photosynthesis; change in predator–prey relationships);
• unnatural flow (inhibition of migration; associated temperature modification of spawning; changes in estuarine productivity).
Table 3.3.1 Summary of the condition indicators, performance indicators, and location of default trigger value tables, for each issue

<table>
<thead>
<tr>
<th>Issue</th>
<th>Condition indicator/target</th>
<th>Performance indicators</th>
<th>Preferred method for obtaining trigger values</th>
<th>Default trigger value for each ecosystem-type</th>
<th>Consider ecosystem-specific modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nuisance aquatic plants</td>
<td>Species composition/abundance</td>
<td>TP conc, TN conc, Chl a conc</td>
<td>Reference data, Reference data</td>
<td>Tables 3.3.2, 3.3.4, 3.3.6, 3.3.8, 3.3.10</td>
<td>Yes — Section 3.3.3.1</td>
</tr>
<tr>
<td>2. Lack of DO</td>
<td>Reduced DO conc, Species composition/abundance</td>
<td>DO conc</td>
<td>Reference data</td>
<td>Tables 3.3.2, 3.3.4, 3.3.6, 3.3.8, 3.3.10</td>
<td>Yes — Section 3.3.3.2</td>
</tr>
<tr>
<td>3. Excess of SPM</td>
<td>Species composition/abundance</td>
<td>SPM conc</td>
<td>Reference data</td>
<td>Tables 3.3.3, 3.3.5, 3.3.7, 3.3.9, 3.3.11</td>
<td>Yes — Section 3.3.3.1</td>
</tr>
<tr>
<td>4. Unnatural change in salinity</td>
<td>Species composition/abundance</td>
<td>EC (salinity)</td>
<td>Reference data</td>
<td>Tables 3.3.3, 3.3.5, 3.3.7, 3.3.9, 3.3.11</td>
<td>No</td>
</tr>
<tr>
<td>5. Unnatural change in temperature</td>
<td>Species composition/abundance</td>
<td>Temperature</td>
<td>Reference data</td>
<td>> 80%ile, < 20%ile</td>
<td>No</td>
</tr>
<tr>
<td>6. Unnatural change in pH</td>
<td>Species composition/abundance</td>
<td>pH</td>
<td>Reference data</td>
<td>Tables 3.3.2, 3.3.4, 3.3.6, 3.3.8, 3.3.10</td>
<td>No</td>
</tr>
<tr>
<td>7. Poor optical properties</td>
<td>Species composition/abundance</td>
<td>Turbidity, Light regime</td>
<td>Reference data</td>
<td>Tables 3.3.3, 3.3.5, 3.3.7, 3.3.9, 3.3.11</td>
<td>No</td>
</tr>
<tr>
<td>8. Unnatural flow regime</td>
<td>Species composition/abundance</td>
<td>Flow regime</td>
<td>Reference data</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a Where local biological and ecological effects data are unavailable.

3.3.2.3 Defining low-risk guideline trigger values

The guideline trigger values are the concentrations (or loads) of the key performance indicators, below which there is a low risk that adverse biological effects will occur. The physical and chemical trigger values are not designed to be used as ‘magic numbers’ or threshold values at which an environmental problem is inferred if they are exceeded. Rather they are designed to be used in conjunction with professional judgement, to provide an initial assessment of the state of a water body regarding the issue in question. They are the values that trigger two possible responses. The first response, to continue monitoring, occurs if the test site value is less than the trigger value, showing that there is a ‘low risk’ that a problem exists. The alternative response, management/remedial action or further site-specific investigations, occurs if the trigger value is exceeded — i.e. a ‘potential risk’ exists.a The aim with further site-specific investigations is to determine whether or not there is an actual problem. Where, after continuous monitoring, with or without site-specific investigations, indicator values at sites are assessed as ‘low risk’ (no potential impact), guideline trigger values may be refined.b The guidelines have attempted as far as possible to make the trigger values specific for each of the different ecosystem types.

Four sources of information are available for use when deriving low-risk trigger values: biological and ecological effects data, reference system data, predictive

*a See figure 3.3.1

*b Section 3.1.5
modelling, or professional judgment.a The guidelines for physical and chemical stressors promote and focus principally on the derivation of low-risk trigger values, from biological and ecological effects data and through the use of reference data.

Ecosystem condition

As already mentioned, the Guidelines recognise three levels of ecosystem condition (1) high conservation/ecological value (condition 1 ecosystems), (2) slightly or moderately disturbed (condition 2 ecosystems), and (3) highly disturbed (condition 3 ecosystems), each with an associated level of protection (table 3.1.2). For condition 1 ecosystems, the Guidelines advise that there should be no change from ambient conditions, unless it can be demonstrated that such change will not compromise the maintenance of biological diversity in the system. Where comprehensive biological effects data are unavailable, a monitoring program is required to show that values of physical and chemical stressors are not changing, using statistically conservative decision criteria as the basis for evaluation.b Values of the criteria as recommended for biological indicators might be used as a starting point in negotiations;c further discussion of statistical error rates relevant to detecting change in physical and chemical stressors is provided in Section 7.4.4.1.d

Box 3.3.1. Sources of information for use when deriving low-risk trigger values

\begin{itemize}
\item[a)] biological and ecological effects data — obtained either from biological effects testing using local biota and local waters (e.g. information derived by eriss for water release standards in Kakadu National Park), or from the scientific literature (preferably for Australia and New Zealand). This method is most appropriate for stressors directly toxic to biota (e.g. salinity, pH, DO, ammonia), but can also be applied to naturally-occurring stressors such as nutrients (e.g. nutrient addition bioassays). Ecological effects data are obtained through site- or ecosystem-specific laboratory and field experiments (see text below for deriving low-risk trigger values).

\item[b)] reference system data — obtained either from the same (undisturbed) ecosystem (i.e. from upstream of possible environmental impacts) or from a local but different system, or from regional reference ecosystems (Section 3.1.4). This is particularly useful for aquatic ecosystems where the management target is to maintain or restore the ecosystem, and where there are sufficient resources to obtain the required information on the reference ecosystem (see the text below for deriving low-risk trigger values).

\item[c)] predictive modelling — particularly useful for certain physical and chemical stressors whose disturbance occurs through transformations in the environment (e.g. nutrients, biodegradable organic matter). In these cases, because of the other factors involved, there does not appear to be a direct relationship between the ambient concentration of the stressor (e.g. total P concentration) and the biological response (e.g. algal biomass). However, there is often a plausible relationship between loading (or flux) and biological response.

\item[d)] professional judgement — may be used in cases where it will not be possible to obtain appropriate data for a reference ecosystem because insufficient study has been undertaken to provide an adequate data base. Such judgement should be supported by appropriate scientific information (e.g. information from 1992 ANZECC guidelines or other guideline documents, e.g. Hart 1974, Alabaster & Lloyd 1982, USEPA 1986, CCREM 1991), and the scientific literature.
\end{itemize}
Low-risk trigger values can be developed for condition 2 and condition 3 ecosystems:

- condition 2, slightly–moderately disturbed ecosystems, where the objective is to maintain biological diversity, acknowledging that stakeholders may also decide to allow some small change to biodiversity as well as improve or restore the ecosystem to a substantially unmodified condition, depending upon the situation;

- condition 3, highly disturbed ecosystems, where the management target will be to maintain, and preferably, improve the ecosystem, although in many cases the possibility of restoring the system to a substantially natural ecosystem may not be realistic. Urban aquatic systems (rivers, streams, wetlands, estuaries) are a case in point. For most of these, the hydrology in particular has been so markedly changed that at best a somewhat modified ecosystem can be achieved.

As suggested for high conservation/ecological value sites above, users also need to negotiate statistical decision criteria that can apply to any monitoring program for condition 2 or condition 3 ecosystems designed to detect change in values of physical and chemical stressors. Where maintenance of biological diversity is an important management goal, these criteria need to be set conservatively, but can be relaxed if some change to the system is acceptable.

The following sections outline the preferred hierarchy for deriving low-risk trigger values for aquatic systems (see figure 3.1.2). Where the preferred approach cannot be immediately implemented, a default or interim approach has been outlined.

3.3.2.4 Preferred approaches to deriving low-risk guideline trigger values

Using ecological effects data

For low-risk trigger values, measure the statistical distribution of water quality indicators either at a specific site (preferred), or an appropriate reference system(s), and also study the ecological and biological effects of physical and chemical stressors.\(^a\) Then define the trigger value as the level of key physical or chemical stressors below which ecologically or biologically meaningful changes do not occur, i.e. the acceptable level of change.\(^b\) Depending on the level of protection of the water body, the trigger value can be defined more or less conservatively after consultation with stakeholders, and using professional advice.\(^c\)

\(a\) See Sections 3.2.3, 8.1 & Monitoring Guidelines

\(b\) Sections 3.3.2.7 & 7.2.3.3

\(c\) Section 8.5.2
event-scale effects. In these systems, it will be necessary to monitor so as to detect these seasonal influences or events. For ecosystems where seasonal or event-driven processes dominate (e.g. tropical wetlands), it is possible to group the data and derive a number of trigger values corresponding to the key seasonal periods. For example, in wet–dry tropical systems two trigger values can be derived, one for the wet season and another for the dry season. In these instances, collect, partition and compare reference and test data according to specific flow regimes and/or seasons, particularly where biological responses to a particular stressor can be identified to be more pronounced in a particular season or flow regime.\(\text{a}\)

Where few data are available (i.e. few reference sites or sampling times) and seasonal and event influences are poorly defined, derive a single trigger value from available data as an interim measure.

Define trigger values for physical and chemical stressors for condition 2 ecosystems, in terms of the 80th and/or 20th percentile values obtained from an appropriate reference system. This choice is arbitrary (though reasonably conservative),\(\text{b}\) and professional advice should be sought wherever possible in selecting an appropriate point on the distribution curve for a system. For stressors that cause problems at high concentrations (e.g. nutrients, SPM, biochemical oxygen demand (BOD), salinity), take the 80th percentile of the reference distribution as the low-risk trigger value. For stressors that cause problems at low levels (e.g. low temperature water releases from reservoirs, low dissolved oxygen in waterbodies), use the 20th percentile of the reference distribution as a low-risk trigger value. For stressors that cause problems at both high and low values (e.g. temperature, salinity, pH), the desired range for the median concentration is defined by the 20th percentile and 80th percentile of the reference distribution.\(\text{c}\)

For condition 3 waterbodies, derive trigger values from site-specific biological or ecological effects data or, when an appropriate reference system(s) has been identified and there are sufficient resources to collect the necessary information, from local reference data. In this latter case, depending on management objectives, define trigger values using a conservative percentile value (e.g. 80th percentile value) to improve water quality (preferred approach), or a less conservative percentile (e.g. 90th percentile) to maintain water quality. Use professional judgement to determine the most appropriate cutoff percentile.

For either condition 2 or condition 3 ecosystems, where there are insufficient information or resources to undertake the necessary site-specific studies, use the default values provided that are derived from regional reference data (see following section).

3.3.2.5 Default approach to deriving low-risk guideline trigger values

The default approach to deriving trigger values has used the statistical distribution of reference data collected within five geographical regions across Australia and New Zealand. Here, depending on the stressor, a measurable perturbation in slightly to moderately disturbed ecosystems has been defined using the 80th and/or 20th percentile of the reference data.\(\text{d}\)

First, New Zealand and Australian state and territory representatives used percentile distributions of available data and professional judgement to derive trigger values for each ecosystem type in their regions. Trigger values were then collated, discussed and agreed for south-east Australia (VIC, NSW, ACT, south-
3.3.2 Philosophy used in developing guidelines for physical and chemical stressors

east QLD, and TAS), south-west Australia (southern WA), tropical Australia (northern WA, NT, northern QLD), south central Australia — low rainfall area (SA) and New Zealand (tables 3.3.2 to 3.3.11). Summaries of the data used to derive guideline trigger values for each Australian state and territory and for New Zealand are provided in Volume 2.

The default trigger values in the present guidelines were derived from ecosystem data for unmodified or slightly-modified ecosystems supplied by state agencies. However, the choice of these reference systems was not based on any objective biological criteria. This lack of specificity may have resulted in inclusion of reference systems of varying quality, and further emphasises that the default trigger values should only be used until site- or ecosystem-specific values can be generated.

Default trigger values for temperature are not provided here. Managers need to define their own upper and lower low-risk trigger values, using the 80th and 20th percentiles, respectively, of ecosystem temperature distribution.

See Section 8.2.2
Tables 3.3.2–3.3.3 South-east Australia

The following tables outline default trigger values applicable to Victoria, New South Wales, south-east Queensland, the Australian Capital Territory and Tasmania. Where individual states or territories have developed their own regional guideline trigger values, those values should be used in preference to the default values provided below. (Upland streams are defined as those at >150 m altitude, while alpine streams are those at altitudes >1500 m.)

Table 3.3.2 Default trigger values for physical and chemical stressors for south-east Australia for slightly disturbed ecosystems. Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by Australian states and territories. Chl \(a\) = chlorophyll \(a\), TP = total phosphorus, FRP = filterable reactive phosphate, TN = total nitrogen, NO\(_x\) = oxides of nitrogen, NH\(_4^+\) = ammonium, DO = dissolved oxygen.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Chl (a) (\mu g L^{-1})</th>
<th>TP (\mu g P L^{-1})</th>
<th>FRP (\mu g P L^{-1})</th>
<th>TN (\mu g N L^{-1})</th>
<th>NO(_x) (\mu g N L^{-1})</th>
<th>NH(_4^+) (\mu g N L^{-1})</th>
<th>DO (% saturation)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland river</td>
<td>na</td>
<td>20(^a)</td>
<td>15(^a)</td>
<td>250(^c)</td>
<td>15(^d)</td>
<td>13(^e)</td>
<td>90–110</td>
<td>6.5–7.5</td>
</tr>
<tr>
<td>Lowland river(^d)</td>
<td>5</td>
<td>50</td>
<td>20</td>
<td>500</td>
<td>40(^d)</td>
<td>20</td>
<td>85–110</td>
<td>6.5–8.0</td>
</tr>
<tr>
<td>Freshwater lakes & Reservoirs</td>
<td>5(^e)</td>
<td>10</td>
<td>5</td>
<td>250</td>
<td>10</td>
<td>10</td>
<td>90–110</td>
<td>8.0(^m)</td>
</tr>
<tr>
<td>Wetlands</td>
<td>no data</td>
</tr>
<tr>
<td>Estuaries(^f)</td>
<td>4(^f)</td>
<td>30</td>
<td>5(^f)</td>
<td>300</td>
<td>15</td>
<td>15</td>
<td>80–110</td>
<td>7.0–8.5</td>
</tr>
<tr>
<td>Marine(^h)</td>
<td>1(^h)</td>
<td>25(^h)</td>
<td>10</td>
<td>120</td>
<td>5(^h)</td>
<td>15(^h)</td>
<td>90–110</td>
<td>8.0–8.4</td>
</tr>
</tbody>
</table>

na = not applicable;
a = monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers — values for periphyton biomass (mg Chl \(a\) m\(^-2\)) to be developed;
b = values are 30 \(\mu g L^{-1}\) for Qld rivers, 10 \(\mu g L^{-1}\) for Vic. alpine streams and 13 \(\mu g L^{-1}\) for Tas. rivers;
c = values are 100 \(\mu g L^{-1}\) for Vic. alpine streams and 480 \(\mu g L^{-1}\) for Tas. rivers;
d = values are 3 \(\mu g L^{-1}\) for Chl \(a\), 25 \(\mu g L^{-1}\) for TP and 350 \(\mu g L^{-1}\) for TN for NSW & Vic. east flowing coastal rivers;
e = values are 3 \(\mu g L^{-1}\) for Tas. lakes;
f = value is 5 \(\mu g L^{-1}\) for Qld estuaries;
g = value is 5 \(\mu g L^{-1}\) for Vic. alpine streams and Tas. rivers;
h = value is 190 \(\mu g L^{-1}\) for Tas. rivers;
i = value is 10 \(\mu g L^{-1}\) for Qld. rivers;
j = value is 15 \(\mu g L^{-1}\) for Qld. estuaries;
k = values of 25 \(\mu g L^{-1}\) for NO\(_x\) and 20 \(\mu g L^{-1}\) for NH\(_4^+\) for NSW are elevated due to frequent upwelling events;
l = dissolved oxygen values were derived from daytime measurements. Dissolved oxygen concentrations may vary diurnally and with depth. Monitoring programs should assess this potential variability (see Section 3.3.3.2);
m = values for NSW upland rivers are 6.5–8.0, for NSW lowland rivers 6.5–8.5, for humic rich Tas. lakes and rivers 4.0–6.5;
n = values are 20 \(\mu g L^{-1}\) for TP for offshore waters and 1.5 \(\mu g L^{-1}\) for Chl \(a\) for Qld inshore waters;
o = value is 60 \(\mu g L^{-1}\) for Qld rivers;
p = no data available for Tasmanian estuarine and marine waters. A precautionary approach should be adopted when applying default trigger values to these systems.
Table 3.3.3 Ranges of default trigger values for conductivity (EC, salinity), turbidity and suspended particulate matter (SPM) indicative of slightly disturbed ecosystems in south-east Australia. Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for ecosystem type.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Salinity (µScm⁻¹)</th>
<th>Explanatory notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland rivers</td>
<td>30–350</td>
<td>Conductivity in upland streams will vary depending upon catchment geology. Low values are found in Vic. alpine regions (30 µScm⁻¹) and eastern highlands (55 µScm⁻¹), and high values (350 µScm⁻¹) in NSW rivers. Tasmanian rivers are mid-range (90 µScm⁻¹).</td>
</tr>
<tr>
<td>Lowland rivers</td>
<td>125–2200</td>
<td>Lowland rivers may have higher conductivity during low flow periods and if the system receives saline groundwater inputs. Low values are found in eastern highlands of Vic. (125 µScm⁻¹) and higher values in western lowlands and northern plains of Vic (2200 µScm⁻¹). NSW coastal rivers are typically in the range 200–300 µScm⁻¹.</td>
</tr>
<tr>
<td>Lakes & reservoirs</td>
<td>20–30</td>
<td>Conductivity in lakes and reservoirs is generally low, but will vary depending upon catchment geology. Values provided are typical of Tasmanian lakes and reservoirs.</td>
</tr>
</tbody>
</table>

Turbidity (NTU)

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Turbidity (NTU)</th>
<th>Explanatory notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland rivers</td>
<td>2–25</td>
<td>Most good condition upland streams have low turbidity. High values may be observed during high flow events.</td>
</tr>
<tr>
<td>Lowland rivers</td>
<td>6–50</td>
<td>Turbidity in lowland rivers can be extremely variable. Values at the low end of the range would be found in rivers flowing through well vegetated catchments and at low flows. Values at the high end of the range would be found in rivers draining slightly disturbed catchments and in many rivers at high flows.</td>
</tr>
<tr>
<td>Lakes & reservoirs</td>
<td>1–20</td>
<td>Most deep lakes and reservoirs have low turbidity. However, shallow lakes and reservoirs may have higher natural turbidity due to wind-induced resuspension of sediments. Lakes and reservoirs in catchments with highly dispersible soils will have high turbidity.</td>
</tr>
<tr>
<td>Estuarine & marine</td>
<td>0.5–10</td>
<td>Low turbidity values are normally found in offshore waters. Higher values may be found in estuaries or inshore coastal waters due to wind-induced resuspension or to the input of turbid water from the catchment. Turbidity is not a very useful indicator in estuarine and marine waters. A move towards the measurement of light attenuation in preference to turbidity is recommended.</td>
</tr>
</tbody>
</table>
Tables 3.3.4–3.3.5 Tropical Australia

The following tables outline default trigger values applicable to northern Queensland, the Northern Territory and north-west Western Australia. Where states or territories have developed regional guideline trigger values those values should be used in preference to the default values provided below. (Upland streams are defined as those at >150 m altitude.)

Table 3.3.4 Default trigger values for physical and chemical stressors for tropical Australia for slightly disturbed ecosystems. Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by Australian states and territories, for the Northern Territory and regions north of Carnarvon in the west and Rockhampton in the east. Chl a = chlorophyll a, TP = total phosphorus, FRP = filterable reactive phosphate, TN = total nitrogen, NOx = oxides of nitrogen, NH4+ = ammonium, DO = dissolved oxygen.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Chl a (µg L⁻¹)</th>
<th>TP (µg P L⁻¹)</th>
<th>FRP (µg P L⁻¹)</th>
<th>TN (µg N L⁻¹)</th>
<th>NOx (µg N L⁻¹)</th>
<th>NH4+ (µg N L⁻¹)</th>
<th>DO (% saturation)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland river</td>
<td>na</td>
<td>10</td>
<td>5</td>
<td>150</td>
<td>30</td>
<td>6</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Lowland river</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>200–300</td>
<td>10</td>
<td>10</td>
<td>85</td>
<td>120</td>
</tr>
<tr>
<td>Freshwater lakes & reservoirs</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>350</td>
<td>10</td>
<td>10</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Wetlands</td>
<td>10</td>
<td>10–50</td>
<td>5–25</td>
<td>350–1200</td>
<td>10</td>
<td>10</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Estuaries</td>
<td>2</td>
<td>20</td>
<td>5</td>
<td>250</td>
<td>30</td>
<td>15</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>Marine Inshore</td>
<td>0.7–1.4</td>
<td>15</td>
<td>5</td>
<td>100</td>
<td>2–8</td>
<td>1–10</td>
<td>90</td>
<td>no data</td>
</tr>
<tr>
<td>Marine Offshore</td>
<td>0.5–0.9</td>
<td>10</td>
<td>2–5</td>
<td>100</td>
<td>1–4</td>
<td>1–6</td>
<td>90</td>
<td>no data</td>
</tr>
</tbody>
</table>

na = not applicable

a = monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers — values for periphyton biomass (mg Chl a m⁻²) to be developed;
b = Northern Territory values are 5µg L⁻¹ for NOx, and <80 (lower limit) and >110% saturation (upper limit) for DO;
c = this value represents turbid lakes only. Clear lakes have much lower values;
d = the lower values are typical of clear coral dominated waters (e.g. Great Barrier Reef), while higher values typical of turbid macrotidal systems (e.g. North-west Shelf of WA);
e = no data available for tropical WA estuaries or rivers. A precautionary approach should be adopted when applying default trigger values to these systems;
f = dissolved oxygen values were derived from daytime measurements. Dissolved oxygen concentrations may vary diurnally and with depth. Monitoring programs should assess this potential variability (see Section 3.3.3.2);
g = higher values are indicative of tropical WA river pools;
h = lower values from rivers draining rainforest catchments.
Table 3.3.5

Ranges of default trigger values for conductivity (EC, salinity), turbidity and suspended particulate matter (SPM) indicative of slightly disturbed ecosystems in tropical Australia. Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for groupings of ecosystem type.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Salinity (µScm⁻¹)</th>
<th>Explanatory notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland & lowland rivers</td>
<td>20–250</td>
<td>Conductivity in upland streams will vary depending upon catchment geology. Values at the lower end of the range are typical of ephemeral flowing NT rivers. Catchment type may influence values for Qld lowland rivers (e.g. 150 µScm⁻¹ for rivers draining rainforest catchments, 250 µScm⁻¹ for savanna catchments). The first flush of water following early seasonal rains may result in temporarily high values.</td>
</tr>
<tr>
<td>Lakes, reservoirs & wetlands</td>
<td>90–900</td>
<td>Values at the lower end of the range are found in permanent billabongs in the NT. Higher conductivity values will occur during summer when water levels are reduced due to evaporation. WA wetlands can have values higher than 900 µScm⁻¹. Turbid freshwater lakes in Qld have reported conductivities of approx. 170 µScm⁻¹.</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland & lowland rivers</td>
<td>2–15</td>
<td>Low values for base flow conditions in NT rivers. QLD turbidity and SPM values highly variable and dependent on degree of catchment modification and seasonal rainfall runoff.</td>
</tr>
<tr>
<td>Lakes, reservoirs & wetlands</td>
<td>2–200</td>
<td>Most deep lakes and reservoirs have low turbidity. However, shallow lakes and reservoirs may have higher turbidity naturally due to wind-induced resuspension of sediments. Lakes and reservoirs in catchments with highly dispersible soils will have high turbidity. Wetlands vary greatly in turbidity depending upon the general condition of the catchment or river system draining into the wetland, recent flow events and the water level in the wetland.</td>
</tr>
<tr>
<td>Estuarine & marine</td>
<td>1–20</td>
<td>Low values indicative of offshore coral dominated waters. Higher values representative of estuarine waters. Turbidity is not a very useful indicator in estuarine and marine waters. A move towards the measurement of light attenuation in preference to turbidity is recommended. Typical light attenuation coefficients (log₁₀) in waters off north-west WA range from 0.17 for inshore waters to 0.07 for offshore waters.</td>
</tr>
</tbody>
</table>
Tables 3.3.6–3.3.7 South-west Australia

The following tables outline default trigger values applicable to southern Western Australia. Where regional guideline trigger values have been developed, those values should be used in preference to the default values provided below. The WA EPA is currently developing site-specific environmental quality criteria for Perth’s coastal waters. (Upland streams are defined as those at >150 m altitude.)

Table 3.3.6 Default trigger values for physical and chemical stressors for south-west Australia for slightly disturbed ecosystems. Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by Western Australia. Chl a = chlorophyll a, TP = total phosphorus, FRP = filterable reactive phosphate, TN = total nitrogen, NO$_x$ = oxides of nitrogen, NH$_4^+$ = ammonium, DO = dissolved oxygen.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Chl a (μg L$^{-1}$)</th>
<th>TP (μg P L$^{-1}$)</th>
<th>FRP (μg P L$^{-1}$)</th>
<th>TN (μg N L$^{-1}$)</th>
<th>NO$_x$ (μg N L$^{-1}$)</th>
<th>NH$_4^+$ (μg N L$^{-1}$)</th>
<th>DO (% saturation)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland riverf</td>
<td>naa</td>
<td>20</td>
<td>10</td>
<td>450</td>
<td>200</td>
<td>60</td>
<td>90</td>
<td>na</td>
</tr>
<tr>
<td>Lowland riverf</td>
<td>3–5</td>
<td>65</td>
<td>40</td>
<td>1200</td>
<td>150</td>
<td>80</td>
<td>80</td>
<td>120</td>
</tr>
<tr>
<td>Freshwater lakes &</td>
<td>3–5</td>
<td>10</td>
<td>5</td>
<td>350</td>
<td>10</td>
<td>10</td>
<td>90</td>
<td>no data</td>
</tr>
<tr>
<td>reservoirs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wetlandsd</td>
<td>30</td>
<td>60</td>
<td>30</td>
<td>1500</td>
<td>100</td>
<td>40</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Estuaries</td>
<td>3</td>
<td>30</td>
<td>5</td>
<td>750</td>
<td>45</td>
<td>40</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>Marineg,h Inshorec</td>
<td>0.7</td>
<td>20b</td>
<td>5h</td>
<td>230</td>
<td>5</td>
<td>5</td>
<td>90</td>
<td>na</td>
</tr>
<tr>
<td>Offshore</td>
<td>0.3b</td>
<td>20b</td>
<td>5</td>
<td>230</td>
<td>5</td>
<td>5</td>
<td>90</td>
<td>na</td>
</tr>
</tbody>
</table>

na = not applicable

a = monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers — values for periphyton biomass (mg Chl a m$^{-2}$) to be developed;

b = summer (low rainfall) values, values higher in winter for Chl a (1.0 μg L$^{-1}$), TP (40 μg P L$^{-1}$), FRP (10 μg P L$^{-1}$);

c = inshore waters defined as coastal lagoons (excluding estuaries) and embayments and waters less than 20 metres depth;

d = elevated nutrient concentrations in highly coloured wetlands (gilven $>$52 g440m$^{-1}$) do not appear to stimulate algal growth;

e = in highly coloured wetlands (gilven $>$52 g440m$^{-1}$) pH typically ranges 4.5–6.5;

f = all values derived during base river flow conditions not storm events;

g = nutrient concentrations alone are poor indicators of marine trophic status;

h = these trigger values are generic and therefore do not necessarily apply in all circumstances e.g. for some unprotected coastlines, such as Albany and Geographe Bay, it may be more appropriate to use offshore values for inshore waters;

i = dissolved oxygen values were derived from daytime measurements. Dissolved oxygen concentrations may vary diurnally and with depth. Monitoring programs should assess this potential variability (see Section 3.3.3.2).
Table 3.3.7 Range of default trigger values for conductivity (EC, salinity), turbidity and suspended particulate matter (SPM) indicative of slightly disturbed ecosystems in south-west Australia. Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for ecosystem types.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Salinity (µScm⁻¹)</th>
<th>Explanatory notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland & lowland rivers</td>
<td>120–300</td>
<td>Conductivity in upland streams will vary depending upon catchment geology. Values at the lower end of the range are typically found in upland rivers, with higher values found in lowland rivers. Lower conductivity values are often observed following seasonal rainfall.</td>
</tr>
<tr>
<td>Lakes, reservoirs & wetlands</td>
<td>300–1500</td>
<td>Values at the lower end of the range are observed during seasonal rainfall events. Values even higher than 1500 µScm⁻¹ are often found in saltwater lakes and marshes. Wetlands typically have conductivity values in the range 500–1500 µScm⁻¹ over winter. Higher values (>3000 µScm⁻¹) are often measured in wetlands in summer due to evaporative water loss.</td>
</tr>
</tbody>
</table>

Turbidity (NTU)

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Turbidity (NTU)</th>
<th>Explanatory notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland & lowland rivers</td>
<td>10–20</td>
<td>Turbidity and SPM are highly variable and dependent on seasonal rainfall runoff. These values representative of base river flow in lowland rivers.</td>
</tr>
<tr>
<td>Lakes, reservoirs & wetlands</td>
<td>10–100</td>
<td>Most deep lakes and reservoirs have low turbidity. However, shallow lakes and reservoirs may have higher turbidity naturally due to wind-induced resuspension of sediments. Lakes and reservoirs in catchments with highly dispersible soils will have high turbidity. Wetlands vary greatly in turbidity depending upon the general condition of the catchment or river system draining into the wetland and to the water level in the wetland.</td>
</tr>
<tr>
<td>Estuarine & marine</td>
<td>1–2</td>
<td>Turbidity is not a very useful indicator in estuarine and marine waters. A more appropriate measure for WA coastal waters is light attenuation coefficient. Light attenuation coefficients (log₁₀) of 0.05–0.08 m⁻¹ are indicative of unmodified offshore waters and 0.09–0.13 m⁻¹ for unmodified inshore waters, depending on exposure. Light attenuation coefficients (log₁₀) for unmodified estuaries typically range 0.3–1.0 m⁻¹, although more elevated values can be associated with increased particulate loading or humic rich waters following seasonal rainfall events.</td>
</tr>
</tbody>
</table>
Tables 3.3.8–3.3.9 South central Australia — low rainfall area

The following tables outline default trigger values applicable to South Australia. Where regional guideline trigger values have been developed those values should be used in preference to the default values provided below. (Upland streams are defined as those at >150 m altitude.)

Table 3.3.8 Default trigger values for physical and chemical stressors for south central Australia — low rainfall areas — for slightly disturbed ecosystems. Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Data derived from trigger values supplied by South Australia. Chl a = chlorophyll a, TP = total phosphorus, FRP = filterable reactive phosphate, TN = total nitrogen, NOx = oxides of nitrogen, NH4+ = ammonium, DO = dissolved oxygen.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Chl a (µg L⁻¹)</th>
<th>TP (µg P L⁻¹)</th>
<th>FRP (µg P L⁻¹)</th>
<th>TN (µg N L⁻¹)</th>
<th>NOx (µg N L⁻¹)</th>
<th>NH4+ (µg N L⁻¹)</th>
<th>DO (% saturation)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland river</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>Lowland river</td>
<td>no data</td>
<td>100</td>
<td>40</td>
<td>1000</td>
<td>100</td>
<td>90</td>
<td>no data</td>
<td>6.5</td>
</tr>
<tr>
<td>Freshwater lakes &</td>
<td>no data</td>
<td>25</td>
<td>10</td>
<td>1000</td>
<td>100</td>
<td>25</td>
<td>no data</td>
<td>6.5</td>
</tr>
<tr>
<td>Wetlands</td>
<td>no data</td>
<td></td>
</tr>
<tr>
<td>Estuaries</td>
<td>5</td>
<td>100</td>
<td>10</td>
<td>1000</td>
<td>100</td>
<td>50</td>
<td>no data</td>
<td>6.5</td>
</tr>
<tr>
<td>Marine</td>
<td>1</td>
<td>100</td>
<td>10</td>
<td>1000</td>
<td>50</td>
<td>50</td>
<td>no data</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Table 3.3.9 Ranges of default trigger values for conductivity (EC, salinity), turbidity and suspended particulate matter (SPM) indicative of slightly disturbed ecosystems in south central Australia — low rainfall areas. Ranges for turbidity and SPM are similar and only turbidity is reported here. Values reflect high site-specific and regional variability. Explanatory notes provide detail on specific variability issues for groupings of ecosystem type.

<table>
<thead>
<tr>
<th>Ecosystem types</th>
<th>Salinity (µScm⁻¹)</th>
<th>Explanatory notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowland rivers</td>
<td>100–5000</td>
<td>Salinity can be highly variable depending on flow.</td>
</tr>
<tr>
<td>Lakes, reservoirs &</td>
<td>300–1000</td>
<td>Wetlands can have substantially higher salinity due to saline groundwater intrusion and evaporation.</td>
</tr>
<tr>
<td>Wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upland & lowland rivers</td>
<td>1–50</td>
<td>Turbidity and SPM are highly variable and dependent on seasonal rainfall runoff.</td>
</tr>
<tr>
<td>Lakes & reservoirs/</td>
<td>1–100</td>
<td>Shallow lakes and reservoirs may have higher turbidity naturally due to wind-induced resuspension of sediments. Lakes and reservoirs in catchments with highly dispersible soils will have high turbidity.</td>
</tr>
<tr>
<td>wetlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estuarine & marine</td>
<td>0.5–10</td>
<td>Higher values are representative of estuarine waters.</td>
</tr>
</tbody>
</table>
Tables 3.3.10–3.3.11 New Zealand

The following tables outline default trigger values applicable to New Zealand. Where regional guideline trigger values have been developed, those values should be used in preference to the default values provided below. (Upland streams are defined as those at >150 m altitude.)

For streams and rivers, New Zealand is developing a five-category ecosystem health categorisation system (A–E, with A being desirable and E undesirable). The draft National Agenda for Sustainable Water Management (NZ Ministry for the Environment 1999) proposes as a long-term goal that all streams are in C grade or better. For lakes, New Zealand has developed a fine scale lakes trophic assessment system, that enables water managers to objectively score the trophic condition of the lake. This assessment system combines a number of physical and chemical parameters. These parameters vary considerably across New Zealand, depending, for example, on whether a lake drains a volcanic catchment, in which case nitrate is a critical parameter, or whether the lake drains a hard rock catchment, in which case phosphorus is a critical parameter. Because of this variability, and because New Zealand has developed this trophic assessment system, it is not appropriate to propose trigger values for individual parameters from lakes.

Further work is needed to develop a categorisation system for New Zealand estuarine and marine ecosystems. Consideration should be given to the use of interim trigger values for south-east Australian estuarine and marine ecosystems (tables 3.3.2–3.3.3) until New Zealand estuarine and marine trigger values are developed.

Table 3.3.10 Default trigger values for physical and chemical stressors in New Zealand for slightly disturbed ecosystems. Trigger values are used to assess risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types. Chl a = chlorophyll a, TP = total phosphorus, FRP = filterable reactive phosphate, d TN = total nitrogen, NO$_x$ = oxides of nitrogen, NH$_4^+$ = ammoniacal nitrogen, DO = dissolved oxygen.

<table>
<thead>
<tr>
<th>Ecosystem type</th>
<th>Chl a (µg L$^{-1}$)</th>
<th>TP (µg P L$^{-1}$)</th>
<th>FRP (µg P L$^{-1}$)</th>
<th>TN (µg N L$^{-1}$)</th>
<th>NO$_x$ (µg N L$^{-1}$)</th>
<th>NH$_4^+$ (µg N L$^{-1}$)</th>
<th>DO$_e$ (% saturation)</th>
<th>pHe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upland river</td>
<td>naa</td>
<td>26b</td>
<td>9b</td>
<td>295b</td>
<td>167b</td>
<td>10b</td>
<td>99</td>
<td>103</td>
</tr>
<tr>
<td>Lowland river</td>
<td>no data</td>
<td>33b</td>
<td>10c</td>
<td>614c</td>
<td>444c</td>
<td>21c</td>
<td>98</td>
<td>105</td>
</tr>
</tbody>
</table>

na = not applicable

a = monitoring of periphyton and not phytoplankton biomass is recommended in upland rivers — values for periphyton biomass (mg Chl a m$^{-2}$) to be developed. New Zealand is currently making routine observations of periphyton cover.

b = values for glacial and lake-fed sites in upland rivers are lower;

c = values are lower for Haast River which receives waters from alpine regions;

d = commonly referred to as dissolved reactive phosphorus in New Zealand;

e = DO and pH percentiles may not be very useful as trigger values because of diurnal and seasonal variation — values listed are for daytime sampling.
Table 3.3.11 Default trigger values for water clarity (lower limit) and turbidity (upper limit) indicative of unmodified or slightly disturbed ecosystems in New Zealand

<table>
<thead>
<tr>
<th>Ecosystem types</th>
<th>Upland rivers<sup>ab</sup></th>
<th>Lowland rivers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clarity (m<sup>-1</sup>)<sup>c d</sup></td>
<td>Turbidity (NTU)<sup>c d</sup></td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>4.1</td>
</tr>
</tbody>
</table>

^a = Light availability is generally less of an issue in NZ rivers and streams than is visual clarity because, in contrast to many of Australia's rivers, most NZ rivers are comparatively clear and/or shallow. Davies-Colley et al. (1992) recommend that visual clarity, light penetration and water colour are important optical properties of an ecosystem which need to be protected (see Volume 2). Neither turbidity nor visual clarity provide a useful estimate of light penetration — light penetration should be considered separately to turbidity or visual clarity. Clarity relates to the transmission of light through water and is measured by the visual range of a black disk (see NZ Ministry for the Environment (1994)) or a Secchi disk.

^b = Recent work has shown that at least some NZ indigenous fish are sensitive to low levels of turbidity; however, it may also be desirable to protect the naturally high turbidities of alpine glacial lakes to prevent possible ecological impacts, such as change in predator–prey relationships.

^c = Note that turbidity and visual water clarity are closely and inversely related, and the 80th percentile for turbidity is consistent with the 20th percentile for visibility and vice versa.

^d = Clarity and turbidity values for glacial sites in upland rivers are lower and higher, respectively.
3.3.2.6 Comparison with the low-risk guideline trigger value

Where trigger values have been developed from reference data, it is advisable to compare the median of replicate samples from a test site with the low-risk trigger value. Statistically, the median represents the most robust descriptor of the test site data, while the reference percentile value represents the degree of excursion that the test median is permitted before triggering some action.

Two issues will influence the outcome of the comparison: the amount of data used to calculate the trigger value (minimum two years of monthly sampling); and the number of replicates used to calculate the median from the test site (minimum of a single sample). A fuller discussion of these issues, with guidance on statistical ramifications of changes in sample size, are provided in Section 7.4.4.1.

Control charting

It is best to continually compare the trigger values against the results gathered during ongoing monitoring of the physical and chemical indicators, using control charts. Control charting displays the data trends and gives early warning that the test site may be trending towards a high-risk situation. Further discussion on the applications of control charts may be found in Section 7.4.4.1 and in the Monitoring Guidelines (ANZECC & ARMCANZ 2000). Excursion of the test site value beyond the trigger value requires that further action be undertaken. This may include, simply, an examination of data for errors, comparisons with previous excursions, or the use of simple decision trees such as those outlined in the risk-based guideline packages.a Site specific investigations may also be required to decide if there is an issue or problem to be addressed.

3.3.2.7 Measuring acceptable ecological change

Measurement of ‘acceptable’ ecological change is difficult (Keough & Mapstone 1995, Mapstone 1995). In very few situations is there enough scientific knowledge to indicate if a certain minimum change from the prevailing or target condition will cause an adverse ecological effect. To define this level of change (a) water quality indicator distributions must be correlated with grades or levels of ecosystem health or integrity indicators/indices, and (b) substantiating potential cause and effect relationships must be identified through these correlations, using laboratory and field-based biological and ecological effects research.

A number of recent studies are trying to link physical and chemical stressors with ecological effects and thereby define meaningful criteria for monitoring ecosystem health:

- As mentioned above, New Zealand is developing a five-category ecosystem health classification for freshwater shingle streams draining hard rock catchments. These categories are derived by comparison with a reference condition, and are based on a number of desirable biological features such as trout spawning, presence of sensitive native fish and no growth of benthic filamentous green algae. Fifty streams have been graded, and the distribution of water quality stressors within each grade will be used to define trigger values for physical and chemical indicators (E Pyle, NZ Ministry for the Environment, pers. comm.).

- Four large-scale studies in Australia have aimed to determine the cause and effect relationships between coastal ecosystem health and physical and chemical stressors (Port Phillip Bay Study, Moreton Bay and Brisbane River

See Sections 3.3.3 & 8.2.3
Wastewater Management Study, and two Perth studies — the Perth Coastal Water Study and the South Metropolitan Coastal Water Studies). These multidisciplinary studies have led to an understanding of the influence of key stressors on ecosystem structure (e.g. suspended sediment concentration effects on seagrass distribution) and function (e.g. nitrogen loading effects on denitrification). The design and implementation of further such studies will aid in defining acceptable levels of ecological change.

3.3.2.8 Load-based guidelines

Traditionally, water quality guidelines have been expressed in terms of the concentration of the stressor that should not be exceeded if problems are to be avoided (ANZECC 1992). Such concentration-based guidelines are based primarily on the prevention of toxic effects. In other situations, guidelines are better expressed in terms of the flux or loading (i.e. mass per unit time), rather than concentration.

While algal growth rate (or productivity) is related to the concentration of key nutrients in the water column, the biomass is more controlled by the total mass of these nutrients available to the growing algae (Wetzel 1975).\(^{\text{11}}\) In many cases, the water column nutrient concentration is not a good indicator of algal biomass. For example, the net water column nutrient concentration could be quite small in an ecosystem with a high algal biomass but with rapid nutrient cycling. Load-based guidelines for nutrients are covered in more detail below.\(^{\text{b}}\)

The dissolved oxygen concentration in a waterbody depends on the balance between the flux of bioavailable organic carbon and the rate at which heterotrophic bacteria use up oxygen in decomposing this material, and the daily inputs of oxygen by diffusion from the atmosphere (increased by mixing) and via photosynthesis by macrophytes and phytoplankton (Stumm & Morgan 1996). Load-based guidelines for bioavailable organic matter are covered below.\(^{\text{c}}\)

Load-based guidelines are applicable also for assessing the effects of sedimentation of suspended particulate matter in smothering benthic organisms. Both the rate of sedimentation and the critical depth of the deposited material are load-based.\(^{\text{d}}\)

A number of case studies are presented to show the types of approaches (particularly those involving predictive modelling) that can be used to determine the sustainable load of particular materials for a particular ecosystem. We recommend that work in developing similar types of case studies be increased. A number of key research areas are identified in Section 8.5.2 of Volume 2.\(^{\text{e}}\)

3.3.2.9 Tropical ecosystems

Although the guideline packages address issues that can apply to all biogeographic regions, the case studies in Sections 3.3.3 and 8.2.3 use examples from temperate regions. There is a need for tropical, risk-based guideline packages to be developed for Australian aquatic ecosystems which are characterised by elevated seasonal temperatures and significant seasonal variability in rainfall and stream-flow patterns (Finlayson & McMahon 1988). Algal blooms may be an issue in some tropical marine and freshwater ecosystems. Extensive macrophyte assemblages can have direct (e.g. smothering) and indirect (e.g. on dissolved oxygen, nutrients and light

\(^{\text{11}}\) Note: this assumes that growth is not limited by light and that losses of algae by zooplankton grazing, sedimentation and ‘washout’ from the system are small.
availability) effects on tropical wetlands, and risk-based guideline packages are needed to address the influences of key stressors on such systems.

Monitoring should be arranged so that it targets episodic events. For instance, seasonally-variable stream flows can cease for large parts of the year. In some streams and reservoirs, slow flowing or pooled water leads to thermal stratification, which together with autochthonous organic loading, results in naturally low and variable dissolved oxygen concentrations (MacKinnon & Herbert 1996, Townsend 1999). Seasonal rainfall events often produce ‘first-flush’ loads of stressors that can cause rapid changes in stressor concentrations (Hart et al. 1987, Townsend et al. 1992) that may not be captured with routine monitoring programs.

There are few data for tropical water bodies; site- or ecosystem-specific reference data need to be collected for tropical ecosystems. The approach recommended in these Guidelines — studies of site-specific biological or ecological effects to develop local trigger values — is also especially appropriate in ecosystems that demonstrate such a high degree of variability in physical and chemical stressors (e.g. wet and wet–dry tropics).

3.3.3 Guideline packages for applying the guideline trigger values to sites

3.3.3.1 Risk-based guideline packages

Ideally, a guideline package, consisting of low-risk trigger values and a protocol for including effects of environmental modifiers, should be developed for each ecosystem issue and each ecosystem type. At this stage, only a limited number of packages can be recommended. Guideline packages are shown and discussed here for two issues:

- nuisance growth of aquatic plants, and
- lack of dissolved oxygen.

Further guideline packages are provided in Section 8.2.3 for:

- excess suspended particulate matter (SPM),
- unnatural change in salinity,
- unnatural change in temperature,
- unnatural change in pH,
- poor optical properties,
- unnatural flow.

Each guideline package consists of two components (figure 3.3.1):

- a set of low-risk trigger values — A set of key stressors such as total phosphorus concentration has been identified for each issue. These are used for an initial decision about the risk of an adverse biological effect occurring. The low-risk trigger values for these key stressors need to be established as outlined in box 3.3.1. These trigger values are concentration-based, but protocols for the development of load-based guidelines are provided where these are more relevant.

- a protocol for further investigating the risk where the trigger value is exceeded — In these potential risk situations, ecosystem-specific modifying factors that may
alter the biological effect of the key stressor need to be considered before the final risk can be assessed. The suggested protocol involves a decision tree or predictive modelling approach where increasingly detailed investigations are undertaken (figure 3.3.1). For example, where testing of the key stressor against the appropriate trigger values suggests a potential risk of excessive cyanobacterial growth in a particular lowland river, the steps involved in further investigating this situation could be:

i. make a simple assessment of the possible effect of key ecosystem-specific modifiers on the biological effect of the stressor. A simple decision tree model for this type of assessment is provided in Case Study 1.

ii. if this simple assessment still suggests a potential risk of adverse biological effects, then undertake more sophisticated site-specific investigations and associated modelling. For example, a load-based model of the system to predict the relationship between nutrient loads, key ecosystem variables and aquatic plant growth, or a more comprehensive ecosystem-based model of the system (see Case Study 4, Harris et al. 1996) could be devised.

In many cases there is insufficient information to allow quantification of the relationships between the key stressor and environmental factors controlling bioavailability. It is essential that these relationships be clarified in the immediate future.

As discussed in Section 3.1.5, generally, local biological effects data and data from local reference site(s) that closely match the test site are not required in the decision trees.

3.3.3.2 Issue: Nuisance growth of aquatic plants

Background

The excessive growth can lead to a number of problems including:

• toxic effects, particularly due to cyanobacteria in fresh and brackish waters, and dinoflagellates in marine waters;
• reduction in dissolved oxygen concentrations when the plants die and are decomposed;
• reduction in recreational amenity (phytoplankton blooms and macrophytes in wetlands and lakes, seagrasses in estuaries and coastal lagoons);
• blocking of waterways and standing waterbodies by macrophytes;
• change in biodiversity.

Excessive growth of aquatic plants occurs when there are high concentrations and loads of nutrients. Other factors play a part in limiting the growth of nuisance species, particularly toxic cyanobacteria. The factors include hydraulic retention time, mixing conditions, light, temperature, suspended solids, grazing pressure and type of substrate.
Key indicators

<table>
<thead>
<tr>
<th>Condition indicators</th>
<th>chlorophyll a (Chl a), cell numbers, species composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key stressors</td>
<td>total phosphorus (TP) and total nitrogen (TN) concentrations</td>
</tr>
<tr>
<td>Ecosystem modifiers</td>
<td>depend upon the ecosystem type, but will include hydraulic retention time (flows and volume of waterbody), mixing regimes, light regime, turbidity, temperature, suspended solids (nutrient sorption), grazing rates, and type of substrate.</td>
</tr>
<tr>
<td>Performance indicators</td>
<td>median (or mean) concentrations of Chl a, TP and TN measured under low flow conditions for rivers and streams and during the growth periods for other ecosystems.</td>
</tr>
</tbody>
</table>

Note that nutrients may also be remobilised and released from sediments. Sediment nutrient releases are influenced by the composition of the sediments (particularly their bioavailable organic matter, Fe, S, N, P, etc.), temperature, mixing regime of the water body and oxygen transfer rates. At present we cannot recommend quantitative relationships to estimate these releases. However, such relationships should become available in the next few years, and it is essential that these be incorporated into the guidelines as soon as possible.\(^{a}\)

Low-risk trigger values

The method used to determine the low-risk trigger values will depend upon the desired level of protection.\(^{b}\)

Slightly to moderately disturbed ecosystems (condition 2 ecosystems)

Depending upon the importance and present condition of the ecosystem, two approaches may be taken to derive the most appropriate trigger values for condition 2 ecosystems.

a) For important ecosystems, where an appropriate local reference system(s) is available, and there are sufficient resources to collect the necessary information for the reference system, the low-risk trigger concentrations for the three key performance indicators (TP, TN and Chl a) should be determined as the 80^{th} percentile of the reference system(s) distribution. Where possible, the trigger value should be obtained for that part of the seasonal or flow period when the probability of aquatic plant growth is most likely.

b) The default regional trigger values contained in tables 3.3.2, 3.3.4, 3.3.6, 3.3.8 and 3.3.10 should be used for those situations where either an appropriate reference system is not available, or the scale of the operation makes it difficult to justify the allocation of resources to collect the necessary information on a reference system.

Highly disturbed ecosystems (condition 3 ecosystems)

a) For important waterbodies, and those in very poor condition, it is best to make appropriate site-specific scientific studies, and to use the information, with professional judgement and other relevant information, to derive trigger values.

\(^{a}\) See recommendations in Section 8.5, Vol. 2

\(^{b}\) Section 3.3.2.3

\(^{12}\) In the future, it is recommended that sustainable nutrient loading rates be estimated for each major ecosystem type (see Section 8.5.2, Volume 2, for research and development recommendations).
Where local but higher-quality reference data are used, a less stringent cutoff
than the 80th percentile value may be used. The 80th percentile values, however,
should be used as a target for site improvement.

b) For highly disturbed waterbodies, where there is a lack of either information or
resources to undertake the necessary site-specific studies, it is best to use the
default, regional trigger values using professional judgement to derive a less
stringent value if this is agreed upon by stakeholders.

Use of the guideline package

Figure 3.3.1 shows the recommended approach for determining the risk of nuisance
aquatic plant growth occurring in a particular ecosystem. There are three steps.

• Test the three performance indicators (Chl a, TP, TN concentrations) for the
particular ecosystem against the appropriate low-risk trigger value for that
ecosystem type. Compare the trigger values with the median concentration for
each performance indicator measured under low flow or high growth conditions.

• If test values are less than trigger values, there is low risk of adverse biological
effects and no further action is required, except for regular monitoring of the key
performance and condition indicators. If after regular monitoring a ‘low risk’
outcome is consistently obtained, there is scope to refine the guideline trigger
value. If test values are higher than the trigger values, there is an increased risk
that adverse biological effects will occur, and either management/remedial action
or further ecosystem-specific investigation is required.a

• For some types of ecosystem, further investigation may be needed, to determine
the influence of ecosystem-specific factors on the key stressors. Case studies 1,
2 and 3b illustrate how these factors might be used to modify the effect of high
nutrient concentrations so that problems due to aquatic plants may not arise
even though nutrient concentrations suggest otherwise. Relatively few
quantitative relationships between these factors have been identified for
Australian systems. More work needs to be undertaken on these relationships.

Sustainable nutrient loads

Although nutrient concentrations are responsible (together with other factors) for
stimulating algal growth, it is the total load of the key nutrients in the ecosystem
that controls the final biomass of aquatic plants. The balance between the nutrients
(e.g. the N:P ratio) can also influence the composition of the algal community.

Transformation processes that occur in a waterbody release additional nutrients
(e.g. from sediments, and suspended particles). It is difficult to account for these
without a detailed knowledge of the system, and in many cases a predictive model
(Lawrence 1997 a,b).

In Australia and New Zealand a number of advances now have helped define the
‘sustainable nutrient loading’ for particular waterbodies. For example, sustainable
total phosphorus loads for the River Murray have been determined using a
simplified Vollenweider model;c Harris et al. (1996) estimated the sustainable
nutrient loads to Port Phillip Bay with particular emphasis on nitrogen; and
sustainable nutrient loading rates have been recommended for several Western
Australian estuaries and the coastal waters near Perth (Masini et al. 1992, 1994,
Most of the models used to estimate sustainable loads rely on empirical relationships between phosphorus or nitrogen loads and chlorophyll a concentration. For example, Cary et al. (1995) found a significant linear relationship between the known externally-derived summer inorganic nitrogen loads to Cockburn Sound, WA, and the mean chlorophyll a concentration over a 13 year period. This relationship was used to define a total external nitrogen loading of 2030 kgN/d needed to sustain a target chlorophyll a concentration of 0.8 µg/L (WADEP 1996). Similarly, “sustainable” total phosphorus loads in various sections of the River Murray system have been defined by relating the annual TP load to the water residence time in a particular reservoir or weir pool to estimate the TP concentration during the summer growth period. Then using published (or empirically derived) TP vs Chl a relationships, the chlorophyll a concentration that would result from a particular TP load has been predicted. Using this information, it has been possible to define a TP load for that waterbody that will sustain a particular target chlorophyll a concentration.

3.3.3.3 Issue: Lack of dissolved oxygen

Background

Low dissolved oxygen (DO) concentration has an adverse effect on many aquatic organisms (e.g. fish, invertebrates and microorganisms) which depend upon oxygen dissolved in the water for efficient functioning. It can also cause reducing conditions in sediments, so the sediments release previously-bound nutrients and toxicants to the water column where they may add to existing problems.

The concentration of DO is highly dependent on temperature, salinity, biological activity (microbial, primary production) and rate of transfer from the atmosphere. Under natural conditions, DO will change, sometimes considerably, over a daily (or diurnal) period, and highly productive systems (e.g. tropical wetlands, dune lakes and estuaries) can become severely depleted in DO, particularly when these systems are stratified.

Of greater concern is the significant decrease in DO that can occur when organic matter is added (e.g. from sewage effluent or dead plant material). The depletion of DO depends on the load of biodegradable organic material and microbial activity, and re-aeration mechanisms operating. A number of predictive computer models now exist for estimating the DO depletion in a particular ecosystem type, and so it should be possible to estimate sustainable loads of biodegradable organic matter for most situations.

The 1992 ANZECC Guidelines recommended that dissolved oxygen should not normally be permitted to fall below 6 mgL$^{-1}$ or 80–90% saturation, determined over at least one diurnal cycle. These guidelines were based almost exclusively on overseas data, since there were very few data on the oxygen tolerance of Australian or New Zealand aquatic organisms. The Australian data are restricted to freshwater fish, and suggest that DO concentrations below 5 mgL$^{-1}$ are stressful to many species (Koehn & O’Connor 1990).

Key indicators

- **Condition indicators:** variation in DO concentration; species composition
- **Key stressor indicator:** loading of biodegradable organic matter (BOM, kg m$^{-2}$ d$^{-1}$)
Modifiers: depend upon the ecosystem type, and include mixing condition (atmospheric O\textsubscript{2} transfer), photosynthetic O\textsubscript{2} production, rate of microbial decomposition, flow, temperature, pre-loading DO, mass of other O\textsubscript{2} consuming materials (e.g. nitrate)

Performance indicators: median (or mean) DO concentration13 measured under low flow conditions for rivers and streams and during low flow and high temperature periods for other ecosystems.

Low-risk trigger values

The method used to determine the low-risk trigger values will depend upon the desired level of protection.a

Slightly to moderately disturbed ecosystems (condition 2 ecosystems)

Depending upon the significance and present condition of the ecosystem, two approaches may be taken to derive the most appropriate trigger values for condition 2 ecosystems.

a) For important ecosystems, where an appropriate reference system(s) is available, and there are sufficient resources to collect the necessary information for the reference system, the low-risk trigger concentrations for DO should be determined as the 20th percentile of the reference system(s) distribution. Where possible the trigger value should be obtained for low flow conditions for rivers and streams and during low flow and high temperature periods for other ecosystems, when DO concentrations are likely to be at their lowest.

b) The default trigger values contained in tables 3.3.2, 3.3.4, 3.3.6, 3.3.8 and 3.3.10 should be used where either an appropriate reference system is not available, or the scale of the operation makes it difficult to justify the allocation of resources to collect the necessary information on a reference system.

Highly disturbed ecosystems (condition 3 ecosystems)

a) For important waterbodies, and those in very poor condition, it is best to make appropriate site-specific scientific studies, and to use the information, with professional judgement and other relevant information, to derive trigger values. Where local but higher-quality reference data are used, a less stringent cutoff than the 20th percentile value may be used. The 20th percentile values, however, should be used as a target for site improvement.

b) For highly disturbed waterbodies, where there is a lack of either information or resources to undertake the necessary site-specific studies, it is best to use the default, regional trigger values using professional judgement to derive a less stringent value if this is agreed upon by stakeholders.

Sustainable loading rates for biodegradable organic matter should be estimated for each major ecosystem type, and used to develop load-based trigger values.b

13 The median DO concentration for the period should be calculated using the lowest diurnal DO concentrations.
Use of the guideline package

Figure 3.3.1 shows the recommended approach for determining the risk of dissolved oxygen depletion occurring in a particular ecosystem. The approach involves three steps.

- Test the performance indicator (DO concentration) for the particular ecosystem against the appropriate low-risk trigger value for that ecosystem type. Compare the trigger values with the median (or mean) DO concentration measured under low flow conditions for rivers and streams and during low flow and high temperature periods for other ecosystems.

- If the test values are greater than the trigger values, there is low risk of adverse biological effects occurring and no further action is required, except for regular monitoring of the key performance indicators and condition indicators. If after regular monitoring a ‘low risk’ outcome is consistently obtained, there is scope to refine the guideline trigger value.a If test values are lower than trigger values, there is an increased risk that adverse biological effects will occur, and further ecosystem-specific investigation is required.

- Investigations to determine the influence of ecosystem-specific factors on the key stressors will depend upon the ecosystem type. A possible approach to calculate the sustainable load of biodegradable organic matter to waterbodies is provided by Lawrence (1997 a,b).b

a See Section 3.1.5
b See also Case Study 2 below
Case Study 1. Assessing the risk of cyanobacterial blooms in a lowland river

We present here an example of the use of a rather simple but effective decision tree, for assessing the risk of algal blooms arising from nutrients released to a lowland river in irrigation return drains. The protocol was initially developed as part of an environmental audit protocol developed for Goulburn-Murray Water (Hart et al. 1997; SKM 1997). More complex (and significantly more expensive) models have been developed for Port Phillip Bay (Harris et al. 1996), Hawkesbury-Nepean river (Sydney Water 1995) and the coastal waters off Perth (WAWA 1995, WADEP 1996).

The conceptual model for this case study (see figure below) assumes that algal growth in lowland rivers is controlled by three major factors:
- the concentrations of the nutrients P and N;
- the light climate (turbidity is used as a surrogate for light intensity because of a lack of data);
- the flow conditions in the river that are required for algal growth to occur.

![Decision Tree for Assessing Cyanobacterial Risk](image)

The ‘guideline package’ in this case includes values for the nutrient concentrations (TP, TN) as the key stressors, and values for turbidity and flow as the modifiers. The numbers provided in the decision boxes for TP, TN and turbidity should be taken as indicative only because they will depend upon the particular ecosystem being considered.

The decision box for flow was based on the requirement that there be a sufficient period of low flow to allow algal numbers to increase to an alert level of 5000 cells mL\(^{-1}\). A period of 6−10 days was estimated, based on an algal doubling time of 2 days and an initial algal concentration of 10\(^{-100}\) cells mL\(^{-1}\). A ‘growth event’ was then defined as a period consisting of at least 6 consecutive days when the flow was less than the 25\(^{th}\) percentile flow obtained from the long term flow record for the system.

For the system in the figure, a high risk situation is indicated if the TP concentration is >15 µgL\(^{-1}\), the turbidity less than 30 NTU, and there is more than one ‘growth event’ of >6 days duration per year. In this case, further investigation and appropriate management actions would be warranted.

Further refinement of this simple model could include:
- determining a more quantitative relationship between turbidity and the light climate for algal growth;
- validation of the assumption that the <25\(^{th}\) percentile flows are the most appropriate low flow conditions to use. The present simple protocol does not take into consideration stratification that is now known to have a significant influence on cyanobacterial growth in lowland rivers (Webster et al. 1996);
- introduction of measures of the ‘bioavailable’ fractions of the nutrients rather than TP and TN (Hart et al. 1998);
- including the possibility that sediment release of nutrients (particularly phosphorus) may occur under low flow conditions;
- incorporation of the various decision ‘rules’ into a user-friendly computer program for ease of use by managers.
Case Study 2. Establishing sustainable organic matter loads for standing waterbodies

Australian research has shown that most rivers transport most water, suspended particulate matter, nutrients and organic matter during a small number of high flow events (Cosser 1989, Harris & Baxter 1996). In standing waterbodies, these event-driven loads can be augmented by point source discharges, decay of ‘in-lake’ algae, and releases from the sediments. High flow events are often followed by long periods of low flow conditions, when rapid decomposition of sedimented organic material by benthic bacteria can occur (Harris & Baxter 1996).

In many ecosystems, this sequence of events is quite normal and actually defines the ecosystem type. However, problems arise when an excess supply of organic material leads to de-oxygenation of the water column and to remobilisation of sediment-bound nutrients (and possibly toxic heavy metals) in bioavailable forms.

These processes may be accelerated if there is reduced transfer of oxygen from the atmosphere to the water column resulting from thermal stratification during the low flow and calm wind conditions typical of summer (Webster et al. 1996). This potential release of sediment-bound nutrients to the water column is of concern because by far the largest amount of phosphorus is stored in the sediments.

Thus, controls on the loading of organic matter to waterbodies is crucial in the effective management of the biological health and other uses of these waterbodies and, in particular, in controlling both dissolved oxygen concentrations and the remobilisation of nutrients from anaerobic sediments.

In terms of the approach proposed in these Guidelines, a possible method for establishing sustainable loads of organic matter to reservoirs, lakes and weir pools (and estuaries) is shown below (see also Lawrence 1997 a,b).

Select key biological indicator and management targets

- Chlorophyll a conc \(<10\mu\text{g}\text{L}^{-1}\) for 9 in 10 years
- Dissolved oxygen concentration \(>60\%\) saturation for 9 in 10 years

Identify key stressor and key performance indicator

- Key stressor Organic matter (BOD)
- Key performance indicator BOD loading (kg.m\(^{-2}\).yr\(^{-1}\))

Determine trigger value for key stressor

- Develop models relating BOD loading to water column DO concentration and sediment nutrient release for range of waterbodies and sediment types
- Validate model relationships using local reference and impacted sites for which data are available
- Use models to determine trigger values (sustainable loads) for key waterbodies throughout the catchment
3.4 Water quality guidelines for toxicants

3.4.1 Introduction

This section provides guidance on the application of water quality guideline trigger values for toxicants. Toxicants is a term used for chemical contaminants that have the potential to exert toxic effects at concentrations that might be encountered in the environment. The risk-based decision scheme (Section 3.4.3) would be most commonly applied in ecosystems that could be classified as slightly to moderately disturbed (condition 2 ecosystems). The decision scheme, which is optional, guides water managers on how to alter the trigger values for specific sites to account for local environmental conditions.

The current NWQMS approach recommends moving away from relying solely on chemical guideline values for managing water quality, to the use of integrated approaches, comprising:

- chemical-specific guidelines coupled with water quality monitoring;
- direct toxicity assessment; and
- biological monitoring.

This approach will help to ensure that the water management focus keeps in view the goal of protecting the environment, and does not shift to merely meeting the numbers.

If more details are required, users may consult Volume 2 Section 8.3.2 on the type of data used to derive guidelines, Section 8.3.3 on the general approaches and methods used, Section 8.3.4 on the derivation procedure and requirements for data, and Section 8.3.5 on application of the decision scheme. Section 8.3.6 provides more information on direct toxicity assessment (i.e. whole effluent and ambient water toxicity testing) and Section 8.3.7 outlines the data used to derive each trigger value and summarises relevant scientific and technical information currently available.

3.4.2 How guidelines are developed for toxicants

Numerical guidelines are an essential tool for the management of receiving waters where discharge of toxicants to the environment cannot reasonably be avoided. The guidelines aim to protect ambient waters from sustained exposures to toxicants, i.e. from chronic toxicity. The derived trigger values are chemical-specific estimates to help managers achieve this aim.

Most users of these guidelines will use the trigger values (table 3.4.1) either directly or as part of the risk-based decision scheme outlined in Section 3.4.3, and in most cases will not need to know how the figures were derived. However, a brief summary is provided here.

3.4.2.1 Toxicity data for deriving guideline trigger values

The preferred data for deriving trigger values come from multiple-species toxicity tests, i.e. field or model ecosystem (mesocosm) tests that represent the complex interactions of species in the field. However, many of these tests are difficult to interpret and there were few such data available that met screening requirements.
Most of the trigger values have been derived using data from single-species toxicity tests on a range of test species, because these formed the bulk of the concentration–response information. High reliability trigger values were calculated from chronic ‘no observable effect concentration’ (NOEC) data. However the majority of trigger values were moderate reliability trigger values, derived from short-term acute toxicity data (from tests ≤96 h duration) by applying acute-to-chronic conversion factors.

3.4.2.2 Extrapolating from laboratory data to protect aquatic ecosystems

Most reliable trigger values (table 3.4.1) were derived using a statistical distribution approach, modified from Aldenberg and Slob (1993). This approach has been adopted in The Netherlands and is recommended by the OECD (1992, 1995). The approach is based on calculations of a probability distribution of aquatic toxicity end-points. It attempts to protect a pre-determined percentage of species, usually 95%, but enables quantitative alteration of protection levels. The 95 percent protection level is most commonly applied in these Guidelines to ecosystems that could be classified as slightly to moderately disturbed.

The traditional approach for extrapolating from single-species toxicity data to protect ecosystems has been to apply arbitrary assessment factors to the lowest toxicity value for a particular chemical (ANZECC 1992). There are deficiencies in this approach (Warne 1998), and it has been used in the current Guidelines only when there was an inadequate data set for the statistical distribution approach. The smallest assessment factors (where they were used) were applied to a comprehensive set of available chronic toxicity data, rather than acute data, when there was a high degree of confidence that the values reflected the field situation. The use of the statistically-based 95% protection provides a more defensible basis for decisions than use of assessment factors.

For chemicals such as mercury, polychlorinated biphenyls (PCBs) and organochlorine pesticides, the main issue of concern is not their direct short-term toxic effect but the indirect risks associated with their longer-term concentration in organisms and the potential for secondary poisoning. Dietary accumulation can be an important route of uptake for some chemicals, and it will need to be addressed in future revisions of the Guidelines. There is currently no formal and specific international guidance for incorporating bioaccumulation into water quality guidelines. For those chemicals that have the potential to bioaccumulate, the decision scheme provides for site-specific re-assessment of this issue if suitable data become available. Field investigations of residue levels in appropriate organisms may provide additional evidence for whether or not bioaccumulation is an issue at the site under study. In the absence of such local data, a higher level of protection is recommended (e.g. 99% protection for slightly–moderately disturbed systems instead of 95%). Chemicals that have the potential to bioaccumulate are indicated in table 3.4.1 (footnote ‘B’).

3.4.2.3 Procedures for deriving trigger values for toxicants

Three grades of guideline trigger values are derived: high, moderate or low reliability trigger values. The grade depends on the data available and hence the confidence or reliability of the final figures (Warne 1998). Only high and moderate reliability trigger values are reported in table 3.4.1.
• **High reliability** guideline trigger values were derived from multiple-species data or chronic NOEC data, using the risk-based statistical distribution method.

• **Moderate reliability** guideline trigger values, which reflect a lower confidence in extrapolation methods, were derived from acute toxicity data. Again, where possible, the statistical distribution method was used with the acute toxicity data. It was then necessary to convert the figure from that calculation to a chronic protection figure by application of either calculated or default acute-to-chronic ratios.

• **Low reliability** guideline trigger values were derived, in the absence of a data set of sufficient quantity, using larger assessment factors to account for greater uncertainty. These are considered as interim or indicative working levels subject to more test data becoming available. Low reliability figures should not be used as default guidelines, although it is reasonable to use them in the risk-based decision scheme to determine if conditions at the site increase or decrease the potential risk. It is important to recognise the interim nature of the low reliability figures and the inherent uncertainties in their derivation and to obtain more data where appropriate. Hence they are only reported in Section 8.3.7.

It has not been possible to derive trigger values for every chemical. Section 8.3.4.5 of Volume 2 provides some preliminary guidance for deriving preliminary working levels for such chemicals, according to international guidance (OECD 1992, 1995).

3.4.2.4 Altering the level of protection for different ecosystem conditions

The trigger values derived using the statistical distribution method were calculated at four different protection levels, 99%, 95%, 90% and 80% (table 3.4.1). Here, protection level signifies the percentage of species expected to be protected. The decision to apply a certain protection level to a specific ecosystem is the prerogative of each particular state jurisdiction or catchment manager, in consultation with the community and stakeholders. State jurisdictions or catchment managers can choose to apply different levels of protection to different ecosystem conditions if there is confidence that the disturbance is due to an overall physico-chemical disturbance and not just structural alteration.

One way of viewing the continuum of disturbance is to apply the three ‘categories of ecosystem condition’ for aquatic ecosystems, described in Section 3.1.3. The recommended procedure for applying the different levels of protection to the continuum of ecosystem conditions is summarised for toxicants in table 3.4.2. In most cases, the 95% protection level trigger values (table 3.4.1) should apply to ecosystems that could be classified as slightly–moderately disturbed, although a higher protection level could be applied to slightly disturbed ecosystems where the management goal is no change in biodiversity. For a few chemicals, higher levels of protection are recommended as default levels for those ecosystems, and the recommended trigger values for typical slightly–moderately disturbed ecosystems are in the shaded boxes in table 3.4.1.

The highest protection level (99%) has been chosen as the default value for ecosystems with high conservation value, pending collection of local chemical and biological monitoring data. The 99% protection levels can also be used as default values for slightly–moderately disturbed systems where local data are lacking on bioaccumulation effects or where it is considered that the 95% protection level fails
to protect key test species. This usually only occurs where trigger values have been calculated from chronic data but fail to protect against acute toxicity or vice versa. Those chemicals are shown in table 3.4.1. An example of this is endosulfan, with which key Australian species show acute toxicity at or near the 95% protection trigger value.

For ecosystems that can be classified as highly disturbed, the 95% protection trigger values can still apply. However, depending on the state of the ecosystem, the management goals and the approval of the appropriate state or regional authority in consultation with the community, it can be appropriate to apply a less stringent guideline trigger value, say protection of 90% of species, or perhaps even 80%. These values are provided as intermediate targets for water quality improvement. If the trigger values have been calculated using assessment factors, there is no reliable way to predict what changes in ecosystem protection are provided by an arbitrary reduction in the factor.
Table 3.4.1 Trigger values for toxicants at alternative levels of protection

Values in grey shading are the trigger values applying to typical *slightly–moderately disturbed* systems; see table 3.4.2 and Section 3.4.2.4 for guidance on applying these levels to different ecosystem conditions.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values for freshwater (µgL⁻¹)</th>
<th>Trigger values for marine water (µgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level of protection (% species)</td>
<td>Level of protection (% species)</td>
</tr>
<tr>
<td></td>
<td>99%</td>
<td>95%</td>
</tr>
<tr>
<td>METALS & METALLOIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>pH >6.5</td>
<td>27</td>
</tr>
<tr>
<td>Aluminium</td>
<td>pH <6.5</td>
<td>ID</td>
</tr>
<tr>
<td>Antimony</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Arsenic (As III)</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Arsenic (As V)</td>
<td>0.8</td>
<td>13</td>
</tr>
<tr>
<td>Beryllium</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Bismuth</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Boron</td>
<td>90</td>
<td>370</td>
</tr>
<tr>
<td>Cadmium</td>
<td>H</td>
<td>0.06</td>
</tr>
<tr>
<td>Chromium (Cr III)</td>
<td>H</td>
<td>ID</td>
</tr>
<tr>
<td>Chromium (Cr VI)</td>
<td>0.01</td>
<td>1.0</td>
</tr>
<tr>
<td>Cobalt</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Copper</td>
<td>H</td>
<td>1.0</td>
</tr>
<tr>
<td>Gallium</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Iron</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Lanthanum</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Lead</td>
<td>H</td>
<td>1.0</td>
</tr>
<tr>
<td>Manganese</td>
<td>1200</td>
<td>1900</td>
</tr>
<tr>
<td>Mercury (inorganic)</td>
<td>B</td>
<td>0.06</td>
</tr>
<tr>
<td>Mercury (methyl)</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Nickel</td>
<td>H</td>
<td>8</td>
</tr>
<tr>
<td>Selenium (Total)</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>Selenium (Se IV)</td>
<td>B</td>
<td>ID</td>
</tr>
<tr>
<td>Silver</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Thallium</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Tin (inorganic, Sn IV)</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Tributyltin (as µg/L Sn)</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Uranium</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Zinc</td>
<td>H</td>
<td>2.4</td>
</tr>
<tr>
<td>NON-METALLIC INORGANICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>D</td>
<td>320</td>
</tr>
<tr>
<td>Chlorine</td>
<td>E</td>
<td>0.4</td>
</tr>
<tr>
<td>Cyanide</td>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>Nitrate</td>
<td>J</td>
<td>17</td>
</tr>
<tr>
<td>Hydrogen sulfide</td>
<td>G</td>
<td>0.5</td>
</tr>
<tr>
<td>ORGANIC ALCOHOLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>400</td>
<td>1400</td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>CHLORINATED ALKANES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,2-dichloroethane</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>
Chapter 3 — Aquatic ecosystems

Chemical Trigger values for freshwater (µM L⁻¹)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1,2-trichloroethane</td>
<td>5400</td>
<td>6500</td>
<td>7300</td>
<td>8400</td>
<td>140</td>
<td>1900</td>
<td>5800</td>
<td>18000</td>
</tr>
<tr>
<td>1,1,2,2-tetrachloroethane</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Pentachloroethane</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Hexachloroethane</td>
<td>B 290</td>
<td>360</td>
<td>420</td>
<td>500</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>

Chemical Trigger values for marine water (µM L⁻¹)

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-dichloropropene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,2-dichloropropene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,3-dichloropropene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>

Chlorinated Alkenes

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroethylene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,1-dichloroethylene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,1,2-trichloroethylene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,1,2,2-tetrachloroethylene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,3-dichloropropene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>

ANILINES

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aniline</td>
<td>8</td>
<td>250</td>
<td>1100</td>
<td>4800</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>2,4-dichloroaniline</td>
<td>0.6</td>
<td>7</td>
<td>20</td>
<td>60</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>2,5-dichloroaniline</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>3,4-dichloroaniline</td>
<td>1.3</td>
<td>3</td>
<td>6</td>
<td>13</td>
<td>85</td>
<td>150</td>
<td>190</td>
<td>260</td>
</tr>
</tbody>
</table>

Aromatic Hydrocarbons

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>600</td>
<td>950</td>
<td>1300</td>
<td>2000</td>
<td>500</td>
<td>700</td>
<td>900</td>
<td>1300</td>
</tr>
<tr>
<td>Toluene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>o-xylene</td>
<td>200</td>
<td>350</td>
<td>470</td>
<td>640</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>m-xylene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>p-xylene</td>
<td>140</td>
<td>200</td>
<td>250</td>
<td>340</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>m+p-xylene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>

Polycyclic Aromatic Hydrocarbons

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthalene</td>
<td>2.5</td>
<td>16</td>
<td>37</td>
<td>85</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>Anthracene</td>
<td>B</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>B</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>B</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>B</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>

Nitrobenzenes

<table>
<thead>
<tr>
<th>Chemical</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
<th>99%</th>
<th>95%</th>
<th>90%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrobenzene</td>
<td>230</td>
<td>550</td>
<td>820</td>
<td>1300</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,2-dinitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,3-dinitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,4-dinitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,3,5-trinitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1-methoxy-2-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1-methoxy-4-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1-chloro-2-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1-chloro-3-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1-chloro-4-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1-chloro-2,4-dinitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,2-dichloro-3-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,3-dichloro-5-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>1,4-dichloro-2-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>2,4-dichloro-2-nitrobenzene</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>
3.4.2 How guidelines are developed for toxicants

Chemicals and their respective trigger values for freshwater and marine water:

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values for freshwater ((\mu g L^{-1}))</th>
<th>Trigger values for marine water ((\mu g L^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level of protection (% species) (99%) (95%) (90%) (80%)</td>
<td>Level of protection (% species) (99%) (95%) (90%) (80%)</td>
</tr>
<tr>
<td>1,2,4,5-tetrachloro-3-nitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,5-dichloro-2,4-dinitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,3,5-trichloro-2,4-dinitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1-fluoro-4-nitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Nitrotoluenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-nitrotoluene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>3-nitrotoluene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>4-nitrotoluene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3-dinitrotoluene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4-dinitrotoluene</td>
<td>16 65 (^\circ) 130 (^\circ) 250 (^\circ)</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2,4,6-tetrinitrotoluene</td>
<td>100 140 160 210</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2-dimethyl-3-nitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2-dimethyl-4-nitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>4-chloro-3-nitrobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Chlorobenzenes and Chloronaphthalenes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monochlorobenzene</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2-dichlorobenzene</td>
<td>120 160 200 270</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,3-dichlorobenzene</td>
<td>160 260 350 520 (^\circ)</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,4-dichlorobenzene</td>
<td>40 60 75 100</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2,3-trichlorobenzene</td>
<td>B 3 10 16 30 (^\circ)</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2,4-trichlorobenzene</td>
<td>B 85 170 (^\circ) 220 (^\circ) 300 (^\circ)</td>
<td>20 80 140 240</td>
</tr>
<tr>
<td>1,3,5-trichlorobenzene</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2,3,4-tetrachlorobenzene</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2,3,5-tetrachlorobenzene</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2,4,5-tetrachlorobenzene</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Pentachlorobenzene</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Hexachlorobenzene</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1-chloronaphthalene</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Polychlorinated Biphenyls (PCBs) & Dioxins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitor 21</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1016</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1221</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1232</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1242</td>
<td>B 0.3 0.6 1.0 1.7</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1248</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1254</td>
<td>B 0.01 0.03 0.07 0.2</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1260</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1262</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Aroclor 1268</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,4'-trichlorobiphenyl</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>4,4'-dichlorobiphenyl</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,2',4,5,5'-pentachloro-1,1'-biphenyl</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4,6,2',4',6'-hexachlorobiphenyl</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Total PCBs</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,7,8-TCDD</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>PHENOLS and XYLENOLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td>85 320 600 1200 (^\circ)</td>
<td>270 400 520 720</td>
</tr>
<tr>
<td>2,4-dimethylphenol</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Nonylphenol</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2-chlorophenol</td>
<td>T 340 (^\circ) 490 (^\circ) 830 (^\circ)</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>3-chlorophenol</td>
<td>T ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>4-chlorophenol</td>
<td>T 160 220 280 (^\circ)</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3-dichlorophenol</td>
<td>T ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4-dichlorophenol</td>
<td>T 120 160 (^\circ) 200 (^\circ) 270 (^\circ)</td>
<td>ID ID ID ID</td>
</tr>
</tbody>
</table>
Chemicals & Trigger Values

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values for freshwater</th>
<th>Trigger values for marine water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(µg L<sup>-1</sup>)</td>
<td>(µg L<sup>-1</sup>)</td>
</tr>
<tr>
<td></td>
<td>Level of protection (%) species</td>
<td>Level of protection (%) species</td>
</tr>
<tr>
<td></td>
<td>99% 95% 90% 80%</td>
<td>99% 95% 90% 80%</td>
</tr>
<tr>
<td>2,5-dichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,6-dichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>3,4-dichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>3,5-dichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,4-trichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,5-trichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,6-trichlorophenol</td>
<td>T ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4,5-trichlorophenol</td>
<td>T,B 3 20 40 95</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4,6-trichlorophenol</td>
<td>T,B 10 10 20 25 30</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,4,5-tetrachlorophenol</td>
<td>T,B ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,4,6-tetrachlorophenol</td>
<td>T,B ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,3,5,6-tetrachlorophenol</td>
<td>T,B ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td>T,B 3.6 10 17 27</td>
<td>11 22 33 55</td>
</tr>
</tbody>
</table>

Nitrophenols

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values (µg L<sup>-1</sup>)</th>
<th>Level of protection (%) species</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-nitrophenol</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>3-nitrophenol</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>4-nitrophenol</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4-dinitrophenol</td>
<td>13 45 80 140</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2,4,6-trinitrophenol</td>
<td>B 9.9 26 40.2 64.6</td>
<td>ID ID ID ID</td>
</tr>
</tbody>
</table>

ORGANIC SULFUR COMPOUNDS

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values (µg L<sup>-1</sup>)</th>
<th>Level of protection (%) species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon disulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Isopropyl disulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>n-propyl sulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Propyl disulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Tert-butyl sulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Phenyl disulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Bis(dimethylthiocarbamyl)sulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Bis(diethylthiocarbamyl)disulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>2-methoxy-4H-1,3,2-benzodioxaphosphorium-2-sulfide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
</tbody>
</table>

Xanthates

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values (µg L<sup>-1</sup>)</th>
<th>Level of protection (%) species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium amyyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Potassium ethyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Potassium hexyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Potassium isopropyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Sodium ethyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Sodium isobutyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Sodium isopropyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Sodium sec-butyl xanthate</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
</tbody>
</table>

PHTHALATES

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values (µg L<sup>-1</sup>)</th>
<th>Level of protection (%) species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethylphthalate</td>
<td>3000 3700 4300 5100</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Diethylphthalate</td>
<td>900 1000 1100 1300</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Dibutylphthalate</td>
<td>B 9.9 26 40.2 64.6</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Di(2-ethylhexyl)phthalate</td>
<td>B 9.9 26 40.2 64.6</td>
<td>ID ID ID ID</td>
</tr>
</tbody>
</table>

MISCELLANEOUS INDUSTRIAL CHEMICALS

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values (µg L<sup>-1</sup>)</th>
<th>Level of protection (%) species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonitrile</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Poly(acrylonitrile-co-butadiene-co-styrene)</td>
<td>200 530 800</td>
<td>200 250 280 340</td>
</tr>
<tr>
<td>Dimethylformamide</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>1,2-diphenylhydrazine</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Diphenylnitrosamine</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Hexachlorocyclopentadiene</td>
<td>ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
</tbody>
</table>
3.4.2 How guidelines are developed for toxicants

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values for freshwater (µgL⁻¹)</th>
<th>Trigger values for marine water (µgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level of protection (% species)</td>
<td>Level of protection (% species)</td>
</tr>
<tr>
<td></td>
<td>99% 95% 90% 80%</td>
<td>99% 95% 90% 80%</td>
</tr>
<tr>
<td>Isophorone</td>
<td>ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>ORGANOCHLORINE PESTICIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Chlordane</td>
<td>B 0.03 0.08 0.14 0.27 B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>DDE</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>DDT</td>
<td>B 0.006 0.01 0.02 0.04 B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Dicofol</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>B 0.03 0.2 A 0.6 A 1.8 A B</td>
<td>0.005 0.01 0.02 0.05 A B</td>
</tr>
<tr>
<td>Endosulfan alpha</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Endosulfan beta</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Endrin</td>
<td>B 0.01 0.02 0.04 C 0.06 A B</td>
<td>0.004 0.008 0.01 0.02 B</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>B 0.01 0.09 0.25 0.7 A B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Lindane</td>
<td>B 0.07 0.2 A 0.4 1.0 A B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Mirex</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>B 0.1 0.2 0.3 0.5 B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>ORGANOPHOSPHORUS PESTICIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azinphos methyl</td>
<td>0.01 0.02 0.05 0.11 A B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>B 0.00004 0.01 0.11 A 1.2 A B</td>
<td>0.0005 0.009 0.04 A 0.3 A B</td>
</tr>
<tr>
<td>Demeton</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Demeton-S-methyl</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Diazinon</td>
<td>0.00003 0.01 0.2 A 2 A B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Dimethoat</td>
<td>0.1 0.15 0.2 0.3 B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Fenitrothion</td>
<td>0.1 0.2 0.3 0.4 B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Malathion</td>
<td>0.002 0.05 0.2 1.1 A B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Parathion</td>
<td>0.0007 0.004 C 0.01 C 0.04 A B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Profenofos</td>
<td>B ID ID ID ID</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Temephos</td>
<td>B ID ID ID ID</td>
<td>0.0004 0.05 0.4 3.6 A B</td>
</tr>
<tr>
<td>CARBAMATE & OTHER PESTICIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>0.06 1.2 A 4 A 15 A B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>Methomyl</td>
<td>0.5 3.5 9.5 23 B</td>
<td>ID ID ID ID</td>
</tr>
<tr>
<td>S-methoprene</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>PYRETHROIDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deltamethrin</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Efenvalerate</td>
<td>ID 0.001* ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>HERBICIDES & FUNGICIDES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bypyrillidium herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diquat</td>
<td>0.01 1.4 10 80 A B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Paraquat</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Phenoxyacetic acid herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>2,4-D</td>
<td>140 280 450 830 B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>2,4,5-T</td>
<td>3 36 100 290 A B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Sulfonylurea herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bensulfuron</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Metsulfuron</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Thiocarbamate herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molinate</td>
<td>0.1 3.4 14 57 B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Thiofencarb</td>
<td>1 2.8 4.6 8 C B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Thiram</td>
<td>0.01 0.2 0.8 C 3 A B</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Triazine herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amitrole</td>
<td>ID ID ID ID ID</td>
<td>ID ID ID ID ID</td>
</tr>
<tr>
<td>Atrazine</td>
<td>0.7 13 45 C 150 C B</td>
<td>ID ID ID ID ID</td>
</tr>
</tbody>
</table>
Chapter 3 — Aquatic ecosystems

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Trigger values for freshwater (µgL⁻¹)</th>
<th>Trigger values for marine water (µgL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level of protection (% species)</td>
<td>Level of protection (% species)</td>
</tr>
<tr>
<td></td>
<td>99%</td>
<td>95%</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Simazine</td>
<td>0.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Urea herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Tebuthiuron</td>
<td>0.02</td>
<td>2.2</td>
</tr>
<tr>
<td>Miscellaneous herbicides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Bromacil</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>370</td>
<td>1200</td>
</tr>
<tr>
<td>Imazethapyr</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Ioxynil</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Sethoxydim</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>B</td>
<td>2.6</td>
</tr>
<tr>
<td>GENERIC GROUPS OF CHEMICALS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear alkylbenzene sulfonates (LAS)</td>
<td>65</td>
<td>280</td>
</tr>
<tr>
<td>Alcohol ethoxylated sulfate (AES)</td>
<td>340</td>
<td>650</td>
</tr>
<tr>
<td>Alcohol ethoxylated surfactants (AE)</td>
<td>50</td>
<td>140</td>
</tr>
<tr>
<td>Oils & Petroleum Hydrocarbons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BP 1100X</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Corexit 7664</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Corexit 8667</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Corexit 9527</td>
<td>ID</td>
<td>ID</td>
</tr>
<tr>
<td>Corexit 9550</td>
<td>ID</td>
<td>ID</td>
</tr>
</tbody>
</table>

Notes: Where the final water quality guideline to be applied to a site is below current analytical practical quantitation limits, see Section 3.4.3.3 for guidance.

Most trigger values listed here for metals and metalloids are High reliability figures, derived from field or chronic NOEC data (see 3.4.2.3 for reference to Volume 2). The exceptions are Moderate reliability for freshwater aluminium (pH >6.5), manganese and marine chromium (III).

Most trigger values listed here for non-metallic inorganics and organic chemicals are Moderate reliability figures, derived from acute LC₅₀ data (see 3.4.2.3 for reference to Volume 2). The exceptions are High reliability for freshwater ammonia, 3,4-DCA, endosulfan, chlorpyrifos, esfenvalerate, tebuthiuron, three surfactants and marine for 1,1,2-TCE and chlorpyrifos.

* = High reliability figure for esfenvalerate derived from mesocosm NOEC data (no alternative protection levels available).

A = Figure may not protect key test species from acute toxicity (and chronic) — check Section 8.3.7 for spread of data and its significance. ‘A’ indicates that trigger value > acute toxicity figure; note that trigger value should be <1/3 of acute figure (Section 8.3.4.4).

B = Chemicals for which possible bioaccumulation and secondary poisoning effects should be considered (see Sections 8.3.3.4 and 8.3.5.7).

C = Figure may not protect key test species from chronic toxicity (this refers to experimental chronic figures or geometric mean for species) — check Section 8.3.7 for spread of data and its significance. Where grey shading and ‘C’ coincide, refer to text in Section 8.3.7.

D = Ammonia as TOTAL ammonia as [NH₃-N] at pH 8. For changes in trigger value with pH refer to Section 8.3.7.2.

E = Chlorine as total chlorine, as [Cl]; see Section 8.3.7.2.

F = Cyanide as un-ionised HCN, measured as [CN]; see Section 8.3.7.2.

G = Sulfide as un-ionised H₂S, measured as [S]; see Section 8.3.7.2.

H = Chemicals for which algorithms have been provided in table 3.4.3 to account for the effects of hardness. The values have been calculated using a hardness of 30 mg/L CaCO₃. These should be adjusted to the site-specific hardness (see Section 3.4.3).

J = Figures protect against toxicity and do not relate to eutrophication issues. Refer to Section 3.3 if eutrophication is the issue of concern.

ID = Insufficient data to derive a reliable trigger value. Users advised to check if a low reliability value or an ECL is given in Section 8.3.7.

T = Tainting or flavour impairment of fish flesh may possibly occur at concentrations below the trigger value. See Sections 4.4.5.3/3 and 8.3.7.
3.4.3 Applying guideline trigger values to sites

Table 3.4.2 General framework for applying levels of protection for toxicants to different ecosystem conditions

<table>
<thead>
<tr>
<th>Ecosystem condition</th>
<th>Level of protection</th>
</tr>
</thead>
</table>
| 1 High conservation/ecological value| • For anthropogenic toxicants, detection at any concentration could be grounds for source investigation and management intervention; for natural toxicants background concentrations should not be exceeded.\(^a\)
Where local biological or chemical data have not yet been gathered, apply the 99% protection levels (table 3.4.1) as default values. Any relaxation of these objectives should only occur where comprehensive biological effects and monitoring data clearly show that biodiversity would not be altered.
• In the case of effluent discharges, Direct Toxicity Assessment (DTA) should also be required on the effluent.
• Precautionary approach taken to assessment of post-baseline data through trend analysis or feedback triggers. |
| 2 Slightly to moderately disturbed ecosystems | • Always preferable to use local biological effects data (including DTA) to derive guidelines.
If local biological effects data unavailable, apply 95% protection levels (table 3.4.1) as default, low-risk trigger values.\(^b\) 99% values are recommended for certain chemicals as noted in table 3.4.1.\(^c\)
• Precautionary approach may be required for assessment of post-baseline data through trend analysis or feedback triggers.
• In the case of effluent discharges DTA may be required. |
| 3 Highly disturbed ecosystems | • Apply the same guidelines as for slightly–moderately disturbed systems. However, the lower protection levels provided in the Guidelines may be accepted by stakeholders.
• DTA could be used as an alternative approach for deriving site-specific guidelines. |

\(^{a}\) This means that indicator values at background and test sites should be statistically indistinguishable. It is acknowledged that it may not be strictly possible to meet this criterion in every situation.
\(^{b}\) For slightly disturbed ecosystems where the management goal is no change in biodiversity, users may prefer to apply a higher protection level.
\(^{c}\) 99% values recommended for chemicals that bioaccumulate or for which 99% provides inadequate protection for key test species. Jurisdictions may choose 99% values for some ecosystems that are more towards the slightly disturbed end of the continuum.

Modified values for this lowest level of protection should not approach levels that may cause acute toxicity. Footnotes in table 3.4.1 indicate where the figures at any protection level may cause acute or chronic toxicity but it is better to view the chemical descriptions\(^a\) to gain the full context. The data distribution curves\(^b\) illustrate the spread of the data (either acute or chronic) used to derive each trigger value. As indicated above, the emphasis should be on improvement of the highly disturbed ecosystem, not just maintenance of a degraded condition.

3.4.3 Applying guideline trigger values to sites

The guideline trigger values (table 3.4.1) were mostly derived primarily according to risk assessment principles, using data from laboratory tests in clean water. They represent the best current estimates of the concentrations of chemicals that should have no significant adverse effects on the aquatic ecosystem. They focus on direct toxic effects of individual chemicals, but it is intended that they be applied at specific sites, where possible, using the decision tree. This does not imply that application of the guidelines requires a full (quantitative) risk assessment.\(^c\)
These trigger values should not be considered as blanket guidelines for national water quality, because ecosystem types vary so widely throughout Australia and New Zealand. Such variations, even on a smaller scale, can have marked effects on the bioavailability, transport and degradation of chemicals, and on their toxicity. The trigger values may not apply to every aquatic ecosystem in Australia or New Zealand and in some instances adequate protection of the environment may require less or in some cases more stringent values.

3.4.3.1 Underlying philosophy for applying the guidelines

The general approach to use of the decision scheme is outlined in Section 3.1.5. If a trigger value listed in table 3.4.1 is exceeded at a site, further action results. The action can be:

i. Incorporation of additional information or further site-specific investigation to determine whether or not the chemical is posing a real risk to the environment. The investigation may determine the fraction of the chemical in the water that organisms can take up (the bioavailable fraction) to use for comparing with the trigger value. The investigation and/or regular monitoring may also result in refinement of the guideline figure to suit regional or local water quality parameters and other conditions. Such refinement would occur where exceedance of the trigger value was shown to have no adverse effects upon the ecosystem; alternatively

ii. Accept the trigger value without change as a guideline applying to that site and initiate management action or remediation.

The appropriate state or regional authority can often provide guidance and direction for implementing the decision scheme. Even if no other steps of the scheme are undertaken, it is important at least to adjust the trigger values for the six hardness-related metals (tables 3.4.3 and 3.4.4) to account for the local water hardness (step 9 of the scheme below). The trigger values for these metals have been derived at low water hardness, corresponding to high toxicity. In some cases, either the potential for environmental harm or the economic importance of the chemical may be sufficiently significant to warrant more intensive work to define a concentration that would adequately protect the environment.

Although the calculated site-specific guideline figure represents a concentration of toxicant that will not degrade the environmental value at the site, it should not be inferred that the environment could be contaminated up to this level (ANZECC 1992).

Where the site-specific guideline for a toxicant is exceeded, management action will normally result. However, this should be addressed under the processes of the individual states/territories or regions. It is important that toxicant guidelines are not interpreted in isolation from other ecosystem factors such as habitat, flow etc, as well as chemical fate. If the chemical is likely to be deposited in sediment, then consult the sediment guidelines.a

In practice, not all site-specific data on a particular chemical are equivalent in extent, detail or method. If a manager were to apply the strict requirements used in deriving the original guideline trigger value, much valuable local information would be lost. Differing site-specific trigger values developed using various methods can be examined and weighted according to pre-determined criteria of quality and relevance to the ecosystem. This should be done in a commonsense
manner consistent with commonly applied principles of risk assessment to arrive at an appropriate figure (e.g. Menzie et al. 1996). The result can provide water managers with a way of integrating varying information on a particular site; if it is provided during assessments by the proponent, it can assist in maintaining consistent professional judgement. Inclusion of these multiple lines of evidence strengthens the overall result.\(^a\)

3.4.3.2 Decision tree for applying the guideline trigger values

The decision scheme outlined below gives step by step guidance on how to assess test site data and tailor the guideline trigger values according to site-specific environmental conditions. A simplified diagrammatic version of the decision tree is shown in figure 3.4.1.\(^b\) The decision scheme is not mandatory and at any time a water manager can default to the original trigger value or use only those steps that are relevant to the situation and chemical at hand. The scheme is designed to determine if the conditions at a specific site reduce (or occasionally, increase) the risk to the environment of the study chemical.

The process of deriving water quality guidelines for a specific site begins with determination of the management aims, including a decision on the appropriate level of protection.\(^c\) The next step is to assess the factors at the site that modify toxicity and bioavailability of the chemical. The measured or calculated bioavailable fraction can then be compared with the trigger value, or in some cases a site-specific guideline can be developed on the basis of known relationships between some physical or chemical parameters and the original trigger value. Examples of the latter include corrections for the effects of hardness for metals, the effects of pH for ammonia, or the effects of temperature for other chemicals. In the absence of quantitative data for such relationships, it may be possible to qualitatively estimate the likely trends in toxicity of a chemical, and hence risk, at a particular site. This is where professional judgement may be necessary, strengthened by examining multiple lines of evidence.

Ultimately, it is biological measurement that will provide confirmation of the site-specific guideline, so the decision scheme directs users to the option of direct toxicity assessment (DTA) if the guideline is exceeded or if there is low confidence in desktop assessments.\(^d\) When no default trigger value is provided, where the trigger value is not applicable to a specific site, or if the chemical is one of a complex mixture, DTA is also useful. Further, DTA may provide the required link between chemical levels and biological effects or establish concentrations that are unlikely to cause adverse environmental effects. Field biological assessments can be undertaken also.\(^e\)

The stepwise procedure for applying the decision scheme is outlined below. The cross-references to Volume 2 provide background information on each step. Site-specific trigger values can be derived at each step and compared with the concentration of chemical measured at the site. Note that at any stage the stakeholders may wish to accept the lowest original or partially modified trigger value and institute management actions to reduce contamination or pollution, if that value is exceeded. However, if a trigger value is accepted without completing the decision tree, the value may not be the most appropriate for the site.

\(^a\) See Section 8.3.5.1

\(^b\) Section 8.3.5.1

\(^c\) Section 3.1.3

\(^d\) Section 8.3.6

\(^e\) Section 3.2
Define primary management aims (figure 3.1.1)

Determine appropriate guideline trigger values for selected indicators (figure 3.1.1)

Decision tree framework for applying guideline trigger values for toxicants

Test against guideline values
Compare contaminant concentration (total) with relevant guideline 'trigger' value

- **Above** (Potential risk) → Consider site-specific factors that may modify the guideline trigger value, calculate a site specific guideline
 - e.g. background, analytical limits, locally important species, chemical/water quality modifiers, mixture interactions

- **Below**

Test against guideline values
Compare contaminant concentration with new guideline value

- **Below** → Low risk

- **Above** → Potential risk

Perform biological effects assessment (e.g. DTA)

- **Non toxic** → Low risk

- **Toxic** → High risk (initiate remedial actions)

Figure 3.4.1 Simplified decision tree for assessing toxicants in ambient waters

Application of the decision tree

1. On advice of the water management authority, select the appropriate target ecosystem condition (Section 3.1.3) for the particular site or region under study." This may determine which trigger value is used. Alternative levels of protection are also given in table 3.4.1. The concept of three ecosystem conditions in Section 3.1.3 is for management guidance only. Users need to
view these as examples that represent a continuum of ecosystem conditions. Table 3.4.2 summarises the approaches and default trigger values recommended for each ecosystem condition. For highly disturbed (condition 3) ecosystems, it may be appropriate to negotiate a lower level of protection for toxicants in some instances and hence to use a less stringent trigger value for ensuing calculations. Initial decisions are also made about whether the sample is freshwater or saline because different trigger values may apply, and whether the chemical is a metal, which may affect which of the following steps apply.

2. Collect and analyse water samples. Design, implement and organise the logistics of sampling protocols, filter samples and mathematically process data. *a*

Judgement on whether a chemical concentration exceeds a guideline value should not rely on results of analysis of a single sample, except possibly if the concentration is high enough to potentially cause acute toxicity. It is better to collect a number of samples and to compare the median value with the guideline value.

Should the samples be filtered in the field? Samples do not normally need to be filtered unless the user is studying metals and considers that field filtration is cost-effective. Often, users will find it easier and most economical to compare total unfiltered concentrations initially. Comparison of total concentrations will, at best, overestimate the fraction that is bioavailable. The major toxic effect of metals comes from the dissolved fraction, so it is valid to filter samples (e.g. to 0.45 µm) and compare the filtered concentration against the trigger value. If other measurements of metal bioavailability are being pursued (e.g. step 10), filtration will be necessary but chemical preservation is not advised.

There are few bioavailability measurements for organic chemicals and expert advice should be sought on the appropriateness of this step for organic chemicals.

The present guidelines do not prescribe specific methods for chemical analyses. *b*

Users must satisfy themselves that analysis methods are appropriate and sufficiently accurate, that the laboratories are suitably accredited and that quality control procedures have been adhered to.

If users intend to follow this decision scheme, it will also be necessary to analyse for the water quality parameters that may affect the chemical toxicity and hence the site-specific trigger value. Measures of pH, organic carbon and hardness (e.g. for metals) will also assist some steps.

3. Consider the analytical practical quantitation limit (PQL) *c* using the best available technology.

If the PQL is above the trigger value (i.e. PQL > TV) there are three options, on advice of the appropriate state regulator:

i) accept that any validated detection implies that guidelines have been exceeded; or

a See Section 3.4.3.3; see also Section 8.3.5.3 and the Monitoring Guidelines

b See the Monitoring Guidelines

c Section 8.3.5.4

14 The practical quantitation limit (PQL) is the lowest level achievable among laboratories within specified limits during routine laboratory operations. The PQL represents a practical and routinely achievable detection level with a relatively good certainty that any reported value is reliable (Clesceri et al. 1998). The PQL is often around 5 times the method detection limit.
ii) examine the decision scheme to see if site-specific factors reduce the environmental risk; or

iii) proceed directly to direct toxicity assessment (DTA) where one of the following two approaches can be adopted:

- site-specific toxicity testing of the toxicant in question, using local species under local conditions, to derive a site-specific trigger value (step 7). Note that some judgement is required (ideally, based on existing information) about whether adverse effects can be expected at concentrations below the PQL, in which case this option is not appropriate.

- DTA of the ambient water (step 12) to ascertain whether adverse effects are being observed at the present concentration of toxicant. If effects are observed, management action is initiated. This can include the use of toxicity identification and evaluation (TIE) techniques, which assist in identifying the unmeasured toxicant source (Burkhard & Ankley 1989, Manning et al. 1993).a

Water regulators may also recommend DTA if the chemical cannot be measured and the issue is of high significance.

4. Consider the natural background concentration (or range) of the toxicant at the site.b This applies mostly for metals and some non-metallic inorganics. The only organic chemicals to which this will commonly apply will be some phenols or globally distributed contaminants such as DDT. Table 8.3.2 (Volume 2) provides some general literature guidance on commonly encountered background levels. If background concentrations cannot be measured at the site, measurement at an equivalent high-quality reference site that is deemed to closely match the geology, natural water quality etc of the site(s) of interest is suggested.

If the background concentration has been clearly established and it exceeds the trigger value (it is preferable to compare filtered background concentrations for metals), the 80th percentile of the background concentration can be accepted as the site-specific trigger value for ensuing steps.c In addition, users may apply DTA to background or reference waters (Step 12) using locally adapted species, to confirm that there is no toxicity. In the unlikely event that adverse effects are observed, management action must be initiated, and again this can include the use of TIE to begin to identify the compound(s) causing toxicity.

5. Examine if transient exposure is relevant and if it can be incorporated into the decision scheme.d At present, there is little international guidance on how to incorporate brief exposures into guidelines, and it may not yet be possible to do this. A number of chemicals can cause delayed toxic effects after brief exposures, so it has been considered unwise to develop a second set of guideline numbers based on acute toxicity to account for brief exposures. Concentrations at which acute toxicity is likely to occur e may not necessarily bear any resemblance to the concentrations that should protect against transient exposure. New information about transient exposure, published in the peer-reviewed literature, may assist users to take transient exposure into account for some chemicals.
6. Determine if the chemical *bioaccumulates* in organisms and if it is likely to cause *secondary poisoning* (i.e. biomagnify).a For some chemicals (e.g. mercury and PCBs), this is the main issue of concern, rather than direct effects of toxicants.b Chemicals that have the potential to bioaccumulate and cause harm are identified by ‘B’ in table 3.4.1. Some metals, such as copper, can accumulate in shellfish without causing harm.

The decision scheme provides the opportunity to examine whether the identified chemicals may actually be bioaccumulating at the study site. This can be validated by relating tissue residues in local organisms to chemical levels in water. If data are available, it may be possible to refine the trigger value to account for these phenomena.c Alternatively the Canadian approach (CCME 1997) can give guidance on what levels of chemicals in food may accumulate in water-associated wildlife.d Appendix 3, Method 1B(i) of Volume 2 may also provide some guidance here. If there are no local data for such chemicals to enable these approaches to be used, users are advised to apply the 99% protection level trigger values for ecosystems that could be classified as *slightly to moderately disturbed*. However, this derivation is precautionary, and is not directly related to bioconcentration effects.

7. Consider whether there are *locally important species* or genera, either ecologically or economically, which were not adequately evaluated in calculating the original default trigger value. It will be necessary to examine the original data set used to calculate the trigger value, available on the enclosed CD-Rom (under the title, *The ANZECC & ARMCANZ Water Quality Guideline Database for Toxicants*), insert any new and appropriate data and recalculate the trigger value by the same method as used originally.e If considering this step, seek expert advice. In most situations it is reasonable to accept the original suite of test species as an adequate surrogate for untested species in the environment but there may be specific instances where it is worthwhile to consider particular species. In some cases it may be valid to check whether the original trigger value has been calculated using species that are locally inappropriate and if these data can be substituted by new data from more appropriate species which have an equivalent role in the ecosystem. Data should only be deleted in *exceptional circumstances*. *It is important in all cases to maintain the integrity of the trigger values by adhering to the requirements for data quality and quantity. It is also important to ensure that a comprehensive overseas data set is not substituted by a native data set that does not cover the necessary breadth of taxa*.f

8. Consider whether *chemical or water quality parameters* at the site may increase or decrease the toxicity of the chemical and hence potentially alter the site-specific trigger value. This applies for organic or non-metallic inorganic chemicals, as the hardness calculations for metalsg also cover all these parameters except temperature and dissolved oxygen.

These parameters may include differences in the proprietary formulation of the chemicalh and variations in water quality parametersi such as suspended matter, dissolved organic matter, salinity, pH, temperature, hardness and dissolved oxygen. Specific guidance on which parameters are known to affect toxicity of each chemical is given in Section 8.3.7. In some cases, there are simple numerical factors or algorithms linking the water quality parameter and the toxicity of the chemical. If so, this can be applied to the original data or to
the trigger value to derive a site-specific guideline that accounts for these parameters, as below (using temperature as an example). Thus:

- Check back to the original data and apply factors to convert all the data to a single (say) temperature that better represents the site. Re-calculate the site-specific guideline according to the method used to derive the original trigger value; or
- if all the original data have been calculated at a standard (say) temperature, apply the factor directly to the trigger value.

Remember that when the parameter increases toxicity, the factor is <1 and when it decreases toxicity, the factor is >1. Tables for temperature and/or pH conversions are available in Volume 2 for ammonia, cyanide and sulfide. If there is not, a simple quantitative relationship, seek expert advice. For instance, the equilibrium between many organic chemicals and suspended matter is poorly understood and requires well-designed studies, e.g. DTA (Step 12) under appropriate conditions. It may be possible to make a qualitative estimate of whether the parameters increase or decrease the risk.

9. For metals or metalloids in fresh waters (up to 2500 mgL⁻¹ salinity), consider the effect of hardness, pH and alkalinity on toxicity and derive a hardness-modified trigger value (HMTV)\(^a\) using the appropriate algorithm from table 3.4.3. Table 3.4.4 indicates how the trigger values vary with different ranges of hardness but extra care is needed for waters with hardness below 25 mgL⁻¹ CaCO₃. If samples have been filtered, for comparison with the HMTV, this will also take into account suspended organic matter. The hardness algorithms (table 3.4.3) also account for pH. The recommended decision scheme for metals is illustrated in figure 3.4.2 but steps beyond the initial hardness adjustment are optional.

If the total metal concentration in the unfiltered sample exceeds the HMTV, then users may choose one or more of four steps:

(i) compare metal concentration with the HMTV after filtering the original un-acidified sample through a 0.45 µm membrane filter. An alternative is to proceed directly to measuring filtered concentrations instead of totals initially.

(ii) proceed to more complex estimates of metal bioavailability (step 10) relating to the study site;

(iii) accept that the guideline has been exceeded and institute management action;

(iv) proceed to DTA (step 12).

10. Examine the concentration of the metal or metalloid to determine the concentration of the bioavailable species, i.e. the concentration that is most likely to exert a biological effect. This uses speciation modelling or chemical techniques for metal speciation analysis\(^b\) to account for the effects of factors such as dissolved organic matter, pH and redox potential on the bioavailable fraction of the metal. Seek professional advice for this step.

If the bioavailable metal concentration exceeds the HMTV or the trigger value (if a hardness algorithm is not available), consider these two options, with guidance from the regulatory authority:

- use direct toxicity assessment (DTA) to confirm the results or develop a new site-specific guideline; or
- develop management options to reduce contamination.
3.4.3 Applying guideline trigger values to sites

Figure 3.4.2 Decision tree for metal speciation guidelines

Further investigations are not mandatory; users may opt to proceed to management/remedial action.
11. Consider the effect of *mixtures* and chemical interactions on overall toxicity.a If the chemical occurs as a component of a simple mixture, and the mixture interactions are simple and predictable (i.e. usually two–three components and additive toxicity) the mixture toxicity can be modelled using the mixtures equation in Section 8.3.5.18.

12. If there is any degree of *complexity* in the mixture interactions, proceed to direct toxicity assessment (DTA) on the ambient waters at the site.b Use an appropriate battery of test species and chronic end-points to ascertain whether toxicity is being observed. If adverse effects are observed, initiate management action and use TIE to assist in identifying the compound(s) that are causing toxicity. Use DTA also to assess toxicity of ambient waters when background levels are high (step 3), when guideline values are lower than analytical PQLs (step 4), or to quantify the effects of water quality parameters or proprietary formulations on the chemical toxicity (step 8).

Where a chemical is to be used in an environment of particular socio-political or ecological importance, it is better to undertake toxicity testing with that chemical on species relevant to that environment (i.e. step 7). It is best to do this before the chemical is introduced. Such data can be used to develop new guideline values relevant to that region; for example, to collect a suite of tropical data for a development affecting tropical freshwaters.

When using DTA to examine toxicity of a chemical to locally important species (step 7) or for pre-release effluents (see table 3.4.2), determine chronic effects at a range of concentrations of the chemical or effluent. For dilution, use the local reference dilution waters. Determine NOEC values for the chemical or effluent and use them for calculating site-specific guidelines. The method used for these calculations will depend on the number of data points, but use the statistical distribution method if the data requirements have been met (at least five species from four different taxonomic groups).c Otherwise it is best to divide the lowest chronic NOEC by 10. Follow the general methods for calculation of trigger values.d

The DTA can comprise *in situ* field and/or laboratory ecotoxicity tests (Chapman 1995), preferably chronic or sub-chronic tests on appropriate species using local dilution waters, satisfying all sampling, test and analysis conditions.e

To aid interpretation of results, analyse the chemicals concurrently with biological assessment, unless there is a biological marker of toxicity.

For already existing discharges and for chemicals that have a high potential to disturb the environment, it will be necessary to measure and assess the biological health of potentially disturbed sites.f
Table 3.4.3 General form of the hardness-dependent algorithms describing guideline values for selected metals in freshwaters

<table>
<thead>
<tr>
<th>Metal</th>
<th>Hardness-dependent algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>HMTV = TV ((H/30)^{0.89})</td>
</tr>
<tr>
<td>Chromium(III)</td>
<td>HMTV = TV ((H/30)^{0.82})</td>
</tr>
<tr>
<td>Copper</td>
<td>HMTV = TV((H/30)^{0.85})</td>
</tr>
<tr>
<td>Lead</td>
<td>HMTV = TV((H/30)^{1.27})</td>
</tr>
<tr>
<td>Nickel</td>
<td>HMTV = TV((H/30)^{0.85})</td>
</tr>
<tr>
<td>Zinc</td>
<td>HMTV = TV((H/30)^{0.85})</td>
</tr>
</tbody>
</table>

HMTV, hardness-modified trigger value (µg/L); TV, trigger value (µg/L) at a hardness of 30 mg/L as CaCO₃; H, measured hardness (mg/L as CaCO₃) of a fresh surface water (≤2.5‰). From Markich et al (in press).

Table 3.4.4 Approximate factors to apply to soft water trigger values for selected metals in freshwaters of varying water hardness

<table>
<thead>
<tr>
<th>Hardness category(^a) (mg/L as CaCO₃)</th>
<th>Water hardness(^b) (mg/L as CaCO₃)</th>
<th>Cd</th>
<th>Cr(III)</th>
<th>Cu</th>
<th>Pb</th>
<th>Ni</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft (0–59)</td>
<td>30</td>
<td>TV</td>
<td>TV</td>
<td>TV</td>
<td>TV</td>
<td>TV</td>
<td>TV</td>
</tr>
<tr>
<td>Moderate (60–119)</td>
<td>90</td>
<td>X 2.7</td>
<td>X 2.5</td>
<td>X 2.5</td>
<td>X 4.0</td>
<td>X 2.5</td>
<td>X 2.5</td>
</tr>
<tr>
<td>Hard (120–179)</td>
<td>150</td>
<td>X 4.2</td>
<td>X 3.7</td>
<td>X 3.9</td>
<td>X 7.6</td>
<td>X 3.9</td>
<td>X 3.9</td>
</tr>
<tr>
<td>Very hard (180–240)</td>
<td>210</td>
<td>X 5.7</td>
<td>X 4.9</td>
<td>X 5.2</td>
<td>X 11.8</td>
<td>X 5.2</td>
<td>X 5.2</td>
</tr>
<tr>
<td>Extremely hard (400)</td>
<td>400</td>
<td>X 10.0</td>
<td>X 8.4</td>
<td>X 9.0</td>
<td>X 26.7</td>
<td>X 9.0</td>
<td>X 9.0</td>
</tr>
</tbody>
</table>

\(^a\) Trigger values from table 3.4.1;
\(^b\) Range of water hardness (mg/L as CaCO₃) for each category as defined by CCREM (1987);
\(^c\) Mid-range value of each water hardness category. For example, a copper trigger value of 1.4 µg/L (from table 3.4.1) with 95% protection level chosen (e.g. slightly–moderately disturbed system) is applied to a site with very hard water (e.g. 210 mg/L as CaCO₃) by multiplying the trigger value by 5.2 to give a site-specific trigger value of 7.3 µg/L. If the hardness is away from the mid-range, it may be preferable to use the algorithm.

3.4.3.3 Comparing monitoring data with trigger values

Wherever there is concern about toxicants in a waterbody, data must be gathered to see if there are accompanying adverse ecological effects. This process has many steps, and it is beyond the scope of these Guidelines to address all of them in detail. Those which are not elaborated in Chapter 7 of this volume are discussed in detail in the Monitoring Guidelines (ANZECC & ARMCANZ 2000). The purpose of this section is to direct readers to the appropriate places to learn more about the necessary procedures for a chemical monitoring program.

- **The design of sampling protocols.** The Monitoring Guidelines (Chapter 3) advises on: study type, temporal and spatial considerations, site selection and identification, sampling precision, timing and frequency, and considerations for selecting indicators (measurement parameters).

- **The implementation of sampling protocols.** Chapter 4 of the Monitoring Guidelines discusses procedural issues in sample acquisition. Specifically it addresses ways for ensuring that samples are sufficiently numerous, well-documented and representative, and with appropriate analytical integrity, to enable strong inferences to be made about water quality. It also offers advice on logistical issues and OH&S considerations. Specific topics include: the mechanics of sampling; maintenance of sample integrity; field QA and QC; and OH&S requirements.
• The elucidation of the ‘biologically-relevant’ (usually bioavailable) fraction. Chapter 7 of these Guidelines provides some information on this topic. Chapter 4 of the Monitoring Guidelines makes recommendations about sample filtration, but mainly from the perspective of sample preservation. Section 7.4.2 of the present Guidelines discusses filtration with an emphasis on speciation considerations. That section also describes other steps in calculating the relevant indicator concentration, such as thermodynamic modelling, while section 8.3.5 describes the application of algorithms designed to account for the modifying effect of indicators such as water hardness.

• The mathematical (including statistical) processing of raw or speciation-adjusted data. Chapter 6 of the Monitoring Guidelines offers a detailed and very useful primer on data management and interpretation, including summary statistics, methods of inference, multivariate analysis, power analysis, regression techniques, trend analysis, and non-parametric statistics. It also contains useful discussions on water quality modelling, outlier detection and the treatment of data below the analytical detection limit.

• The comparison of test data with background data and default trigger values. Whether or not a study area has adequate water quality is decided by comparing monitoring data with a guideline recommendation. This assessment of whether the guideline has been exceeded is embodied in the concept of an ‘attainment benchmark’. The default trigger value can be structured as a comparison between reference (or background) and test-site data or as a comparison with a single default trigger value. Statistical decision criteria can be used to compare test data with background data or default trigger values. In general, the greater the amount of reference data (if applicable) and test data gathered, the smaller will be the error rates associated with detecting change in toxicant concentrations in the field. Wherever maintenance of biological diversity is a key management goal — e.g. sites of high conservation value (condition 1) or slightly disturbed systems (condition 2), statistical decision criteria should be set as conservatively as possible. Values of the criteria as recommended for biological indicators might be used as a starting point in negotiations.

\[\text{See Section 7.4.4.2}\]
\[\text{Section 3.1.7 \ (statistical decision criteria); Section 7.4.4.2 \ (default trigger values); Section 7.4.4.2 \ (detecting change in toxicant concentrations in the field); See also the Monitoring Guidelines Chapter 6.}\]

\[\text{See also the Monitoring Guidelines Chapter 6.}\]
3.5 Sediment quality guidelines

3.5.1 Introduction

The *Australian Water Quality Guidelines for Fresh and Marine Waters* (ANZECC 1992) provided a framework for managing receiving water quality. Those Guidelines recognised that total load and fate of contaminants, particularly to enclosed systems, should also be considered. Sediments are important, both as a source and as a sink of dissolved contaminants, as has been recognised for some time. As well as influencing surface water quality, sediments represent a source of bioavailable contaminants to benthic biota and hence potentially to the aquatic food chain. Therefore it is desirable to define situations in which contaminants associated with sediments represent a likely threat to ecosystem health. While costly remediation or restoration might not represent a management option, sediment guidelines can usefully serve to identify uncontaminated sites that are worthy of protection. Sediment quality guidelines are being actively considered by regulatory agencies worldwide.

This section reviews the current state of knowledge on environmental effects of contaminants in sediments, and the approaches being used to formulate sediment quality guidelines. On the basis of these, it outlines a procedure for the development of appropriate sediment quality guidelines for Australia and New Zealand. The guidelines would apply to slightly to moderately disturbed (condition 2) and highly disturbed (condition 3) aquatic ecosystems.\(^a\) Consideration of sediment quality follows the decision-tree approach being adopted in these Guidelines, with a focus on identifying the issues and the protection necessary to manage them.

For aquatic ecosystems considered to be of high conservation/ecological value (condition 1) a precautionary approach is recommended. In these ecosystems, chemicals originating from human activities should be undetectable, and naturally occurring toxicants (e.g. metals) should not exceed background sediment concentrations.\(^b\) This approach should only be relaxed when there are considerable biological assessment data showing that such a change in sediment quality would not disturb the biological diversity of the ecosystem.

3.5.2 Underlying philosophy of sediment guidelines

It is important to understand why sediment guidelines are being developed and how and where they might be applied. The establishment of guidelines will serve three principal purposes:

- to identify sediments where contaminant concentrations are likely to result in adverse effects on sediment ecological health;
- to facilitate decisions about the potential remobilisation of contaminants into the water column and/or into aquatic food chains;
- to identify and enable protection of uncontaminated sediments.

Many urban and harbour sediments fall into the first category, usually being contaminated by heavy metals and hydrophobic organic compounds resulting from both diffuse and point-source inputs. They are not easily remediated. At present,
Chapter 3 — Aquatic ecosystems

ex situ treatment or dredging and disposal are the most cost-effective options. If a site is known to have highly contaminated sediments with potential for biological uptake, it may be possible to control the collection of benthic organisms for human consumption. For the most part, because of the enormous costs involved, there is unlikely to be large-scale sediment remediation, unless it is driven by human health risk assessments. Contaminated sediments can be remediated naturally when fresh sediments, able to support viable biological populations, settle on top of them. This can occur through water column inputs and can be managed through controls on inputs via water quality guidelines. Management conflicts can arise when natural sediment accumulation restricts navigation.

It is possible to adopt measures to protect unmodified areas from further contamination by managing inputs. This is where the application of sediment quality guidelines will be of greatest value. Just as for water quality guidelines, the application of sediment guidelines will involve a decision-tree approach. It is important to reiterate that the guidelines should not be used on a pass or fail basis.

The guideline numbers are trigger values that, if exceeded, prompt further action as defined by the decision tree. The first-level screening compares the trigger value with the measured value for the total contaminant concentration in the sediment. If the trigger value is exceeded, then this triggers either management/remedial action or further investigation to consider the fraction of the contaminant that is bioavailable or can be transformed and mobilised in a bioavailable form.

In the case of metals, the dilute-acid-soluble metal concentration is likely to be a more meaningful measure than the total value. The derivation of future trigger values might ultimately be based on this measurement. Non-available forms will include mineralised contaminants that require strong acid dissolution. For metals that form insoluble sulfides, the role of amorphous iron sulfide (FeS), measured as so-called acid volatile sulfides (AVS), can be an important factor in reducing metal bioavailability. This exchangeable sulfide is able to bind released metals in non-bioavailable forms. Changes in redox potential and pH also affect the availability of metals and other contaminants, and should be considered.

It is important to consider both sediment pore waters and the sediment particles as sources of contaminants. The importance of these sources varies for various classes of sediment dwelling organisms, as discussed elsewhere.\(^a\)

3.5.3 Approach and methodology used in trigger value derivation

The many approaches adopted internationally to derive sediment quality guidelines are more fully described in Section 8.4 (Volume 2). By far the most widely used method is an effects database for contaminated and uncontaminated sites, based on or derived from field data, laboratory toxicity testing and predictions based on equilibrium partitioning of contaminants between sediment and pore water. There are few reliable data on sediment toxicity for either Australian or New Zealand samples from which independent sediment quality guidelines might be derived, and without a financial impetus there is little likelihood that further data will be forthcoming in the immediate future. Because of this, and as has been done in many other countries, the option selected for the sediment quality guidelines is to use the best available overseas data and refine these on the basis of our knowledge of existing baseline concentrations, as well as by using local effects data as they become available.
3.5.4 Recommended guideline values

3.5.4.1 Metals, metalloids, organometallic and organic compounds

The recommended guideline values for a range of metals, metalloids, organometallic and organic sediment contaminants are listed in table 3.5.1.\(^a\) Values are expressed as concentrations on a dry weight basis. This does not imply that samples should be dried before analysis, resulting in potential losses of some analytes, but that results should be corrected for moisture content. For organic compounds, values are normalised to 1% organic carbon, rather than being expressed as mg/kg organic carbon as is sometimes done. If the sediment organic carbon content is markedly higher than 1%, the guideline value should be relaxed (i.e. made less stringent), because additional carbon binding sites reduce the contaminant bioavailability.

The issue of uncertainties is often overlooked and is worth re-emphasising. The database underpinning the guidelines (Long et al. 1995) was originally designed to rank sediments. The values represent a statistical probability of effects (10% or 50%) when tested against only one or two species, principally amphipods. This is not analogous to the Aldenberg and Slob (1993) approach to water quality guidelines that are protective of 95% of the species, based on tests on a large range of aquatic species of varying sensitivities. Note that some tests use sea urchin fertilisation, while for organic compounds the tests apply Microtox® luminescent bacteria to solvent extracts of sediments. The ecological relevance of these is questionable.

There are added uncertainties about how well the effects of multiple toxicants have been dealt with. The data do not consider antagonism or synergism between chemicals, and, as originally derived, they are based only on disturbances to biological receptors and do not relate to human health disturbances.

3.5.4.2 Ammonia, sulfide, nutrients and other sediment contaminants

No specific guideline values are provided in any of the overseas databases for ammonia or nutrients such as phosphate and nitrate, yet it is important to identify when these represent a threat to benthic communities.

The major disturbance of ammonia will be seen in pore waters, and it is best that these be sampled and the measured ammonia concentrations compared against water quality guidelines.\(^b\)

The biological effects of sulfide in sediments are poorly understood. The decision tree acknowledges the role of sulfide in reducing metal toxicity, but sulfide can affect animal behaviour which in turn can alter the toxicity of both sulfide and also other sediment contaminants (Wang & Chapman 1999). Both sulfide and ammonia can potentially be released in any sediment studies. This may require the refining of appropriate TIE protocols for use with sediments.
Table 3.5.1 Recommended sediment quality guidelinesa

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>ISQG-Low (Trigger value)</th>
<th>ISQG-High</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALS (mg/kg dry wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Cadmium</td>
<td>1.5</td>
<td>10</td>
</tr>
<tr>
<td>Chromium</td>
<td>80</td>
<td>370</td>
</tr>
<tr>
<td>Copper</td>
<td>65</td>
<td>270</td>
</tr>
<tr>
<td>Lead</td>
<td>50</td>
<td>220</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>Nickel</td>
<td>21</td>
<td>52</td>
</tr>
<tr>
<td>Silver</td>
<td>1</td>
<td>3.7</td>
</tr>
<tr>
<td>Zinc</td>
<td>200</td>
<td>410</td>
</tr>
<tr>
<td>METALLOIDS (mg/kg dry wt)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>ORGANOMETALLICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributyltin (μg Sn/kg dry wt.)</td>
<td>5</td>
<td>70</td>
</tr>
<tr>
<td>ORGANICS (μg/kg dry wt)b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>16</td>
<td>500</td>
</tr>
<tr>
<td>Acenaphthalene</td>
<td>44</td>
<td>640</td>
</tr>
<tr>
<td>Anthracene</td>
<td>85</td>
<td>1100</td>
</tr>
<tr>
<td>Fluorene</td>
<td>19</td>
<td>540</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>160</td>
<td>2100</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>240</td>
<td>1500</td>
</tr>
<tr>
<td>Low Molecular Weight PAHs c</td>
<td>552</td>
<td>3160</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>261</td>
<td>1600</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>430</td>
<td>1600</td>
</tr>
<tr>
<td>Dibenz(a,h)anthracene</td>
<td>63</td>
<td>260</td>
</tr>
<tr>
<td>Chrysene</td>
<td>384</td>
<td>2800</td>
</tr>
<tr>
<td>Fluoranthene</td>
<td>600</td>
<td>5100</td>
</tr>
<tr>
<td>Pyrene</td>
<td>665</td>
<td>2600</td>
</tr>
<tr>
<td>High Molecular Weight PAHs c</td>
<td>1700</td>
<td>9600</td>
</tr>
<tr>
<td>Total PAHs</td>
<td>4000</td>
<td>45000</td>
</tr>
<tr>
<td>Total DDT</td>
<td>1.6</td>
<td>46</td>
</tr>
<tr>
<td>p,p'-DDE</td>
<td>2.2</td>
<td>27</td>
</tr>
<tr>
<td>o,p'- + p,p'-DDD</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Chlorodane</td>
<td>0.5</td>
<td>6</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>0.02</td>
<td>8</td>
</tr>
<tr>
<td>Endrin</td>
<td>0.02</td>
<td>8</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>Total PCBs</td>
<td>23</td>
<td>–</td>
</tr>
</tbody>
</table>

a Primarily adapted from Long et al. (1995);

b Normalised to 1% organic carbon;

c Low molecular weight PAHs are the sum of concentrations of acenaphthene, acenaphthalene, anthracene, fluorene, 2-methylnaphthalene, naphthalene and phenanthrene; high molecular weight PAHs are the sum of concentrations of benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenzo(a,h)anthracene, fluoranthene and pyrene.
For nutrients, the need to define sediment guidelines is debatable. In this case, the disturbance that we are seeking to protect against is algal or macrophyte blooms, whereas the proposed guidelines address biological disturbances, based in part on equilibrium partitioning to sediment pore waters and ultimately the water column. It should theoretically be possible to derive a guideline value based on the undesirable release of nutrients to the water column and their subsequent undesirable ecosystem disturbances. This would require some measure or prediction of pore water nitrogen and phosphorus and a judgement as to what concentration of bioavailable nutrient constitutes a threat, logically based on water quality guidelines.

There are methods that purport to measure bioavailable phosphorus, for example bioassays or the use of iron strips, but there are factors such as redox potential that will be important in defining this. Indeed, control of bioavailable carbon inputs is more important than the concentration of phosphorus itself. The application of water quality guidelines to pore waters is possible, although prior use of the nutrients by benthic organisms may have already reduced the pore water concentrations. It is generally thought that development of nutrient guidelines is too difficult at this stage, and must await further research developments.

3.5.4.3 Absence of guidelines

In some instances, no guidelines will be specified for a contaminant of interest. This generally reflects an absence of an adequate data set for that contaminant. An interim approach is required to provide some guidance as well as to ensure environmental protection in situations where guidelines would apply. The approach suggested is to derive a value on the basis of natural background (reference) concentration multiplied by an appropriate factor. A factor of two is recommended, although in some highly disturbed ecosystems a slightly larger factor may be more appropriate, but no larger than three. An alternative approach is to apply the water quality guideline values to sediment pore waters.

3.5.5 Applying the sediment quality guidelines

A protocol is provided to summarise key aspects of collection and laboratory analysis of sediment samples\(^a\) while the Monitoring Guidelines provide full details.

3.5.5.1 Sediment sampling

The use of appropriate sampling techniques is a prerequisite for chemical or toxicity testing of sediments or sediment pore waters. The depth of sampling will be dictated by the issue being investigated, and this in turn will determine whether corers or grab sampling is preferable. Full details on sampling methodology are provided in the Monitoring Guidelines.

3.5.5.2 Applications of chemical testing

It is important to recognise the limitations applicable to the guideline values in table 3.5.1 as discussed above. They nevertheless form a good basis for sediment quality assessment, if applied using a decision tree approach as illustrated in figure 3.5.1.
The general approach to use of the decision scheme is outlined in Section 3.1.5. If the lower sediment quality guideline, the trigger value, for a particular contaminant is not exceeded, it is unlikely that it will result in any biological disturbance for organisms inhabiting that sediment. If the trigger value is exceeded, either management (including remedial) action is taken, or additional site-specific studies are conducted to determine whether this exceedance poses a risk to the ecosystem.
Should a ‘low risk’ outcome result after continuous monitoring, there is scope to refine the guideline trigger value. Note that in the consideration of guideline values for metals, total metals concentrations are used, however, acid-soluble metals, are more representative of a bioavailable fraction and it is envisaged that ultimately trigger value compliance will be based on this measurement, as discussed later.

Comparison with background concentrations

The next step in the decision tree involves a comparison with background concentrations. Exceedance of a trigger value is acceptable if it is at or below the normal background concentration for a site. The selection of background or reference no-effects sites should, where possible, use sediments of comparable grain sizes. Similarly, the analysis of sediment cores must ensure that fluctuations in contaminant concentrations with depth are not the result of grain size changes, or in the case of organics, to changes in the organic carbon content.

For metals, a reliable determination of ‘natural’ levels of contaminants is best done on the basis of trace element ratios determined for a range of uncontaminated sites. Usually the contaminant element is referred to naturally occurring elements such as lithium, iron or aluminium (e.g. Loring & Rantala 1992).

The theoretical background concentration of most synthetic organic compounds is zero, but from a practical viewpoint, ubiquitous contamination has occurred far from point sources. Reference sites removed from such sources are appropriate for determining background concentrations.

Consideration of factors controlling bioavailability

If both the lower guideline trigger value and the background or reference site concentrations are exceeded, the next level evaluation will be to consider whether there are any factors which might lower the potential bioavailability of contaminants. The methods of sampling of sediments and sediment pore waters will be critical if meaningful data (especially for metals) are to be obtained, to ensure that the natural chemical conditions, especially redox conditions, salinity and pH, are not altered. If such changes are allowed to occur, erroneous analytical data on contaminant bioavailability may be obtained.

For metals, the speciation considerations might be:

a) **Sediment speciation** — dilute-acid-extractable metals concentrations below lower guideline value. It is recommended that this should involve treatment of the sample with 1 M hydrochloric acid for 1 hour (Allen 1993).

Since a considerable fraction of the total metal concentration in sediments may be present in detrital mineralised phases that are not bioavailable, a better estimate of the bioavailable fraction is desirable. Although the capacity of chemical extractions to selectively remove only this fraction is limited, a dilute-acid-extraction will not remove the mineralised fractions and will therefore provide more appropriate metal concentration data for use in new effects databases. During extraction of carbonate- or sulfide-containing sediments, allowance must be made for acid consumed by reaction with these phases.

Note that, except for spiked sediment toxicity tests where ionic metal additions are made, the field data used to derive the guidelines are likely to be based on total concentrations. Therefore a judgement against these measurements using...
speciation cannot be fully justified. Rather, such considerations should be applied in new guideline values developed from an NWQMS database.

b) **Acid volatile sulfides, AVS:** $\Sigma_i [SEM] < [AVS]$

 If the concentration of acid volatile sulfide (AVS), released by dilute acid treatment of the moist sediment, exceeds the sum of the heavy metal concentrations released by the same treatment (referred to as simultaneously extracted metals (SEM)), then this excess sulfide is able to bind heavy metals in insoluble and non-bioavailable forms, and therefore the metals will not cause toxicity. This applies particularly to lead, zinc and cadmium. Its application to copper, nickel and possibly cobalt is suspect.

 Recent reports urge caution in the application of the AVS binding model, particularly because of concern for its relevance in longer-term and community level effects (IMO 1997). Other limitations are discussed in Section 8.4. A description of the methods for measuring AVS and SEM may be found in Allen et al. (1992).

c) **Pore water:** $\Sigma_i [M_{i,d}]/[WQG_{i,d}] < 1$, where $[M_{i,d}]$ is the total dissolved pore water concentration for each metal and $[WQG_{i,d}]$ is the water quality guideline value for each metal.

 Assuming that pore water represents the major exposure route to sediment toxicants, then if pore water concentrations for any metal are below the water quality guideline concentration, there is unlikely to be an adverse biological disturbance. The correct methods should be used for sampling pore waters, to avoid losses or changes in redox status. Note that there is the possibility of seasonal variations in pore water contaminant concentrations as well as in AVS.

 For organic compounds, the use of guidelines normalised to total organic carbon (TOC) is a first stage. The effects of natural sediment and water chemistry on the equilibrium partitioning of the particular organic compounds are moderating factors requiring consideration. This may mean separate measurements of the partitioning into natural waters of appropriate salinity or the measurement of pore water concentrations. Analytical detection with the small volumes generally encountered creates problems, so this is often a difficult area. Such considerations as rates of degradation, either chemical, physical or biological, can be important for hydrophilic and for some hydrophobic organics.

 If on the basis of any of the above considerations the trigger value is still exceeded, and further investigation is sought rather than management/remedial action, toxicity tests will be required. The tests will further characterise the nature of sediment as either moderately or highly contaminated. Alternatively, toxicity testing might be employed in lieu of more detailed chemical investigations when the trigger value is exceeded.

 The guidelines discussed above have been derived on the basis of the toxicity of contaminants in sediments and associated pore waters, to benthic biota. An additional factor that needs to be taken into consideration, especially for riverine sediments, is mobility. Dynamic zones can be created in rivers during periods of high flow that lead to erosion and sediment mobilisation. Finer, contaminant-rich particles will be the most mobile, although larger particles will also be moved in storm flows. Two considerations arise under these conditions.

\[\text{See Section 8.4.3.2, Vol. 2} \]
First there is the concern for enhanced contaminant release, either resulting from the disturbance of surface sediments and pore waters, or as a consequence of chemical transformations, such as oxidation of previously anoxic sediments. The former is not important, since pore water concentrations will be diluted. The possibility of oxidative release especially of metals is more a concern. In this case the kinetics of oxidation of metal sulfides is important. Elutriate tests with overlying saline or freshwaters can be used to demonstrate a worst case release scenario.

Secondly there is the possibility that the deposition process will lead to particle sorting, and if this were to result in a greater concentration of clay/silt particles at a particular site, there is a real possibility that in some cases the guideline concentrations for the whole sediment could now be exceeded because of removal of the diluent effect of coarser particles. If sorting is believed to be a possibility, it would be appropriate to assess the sediment on the basis of analyses on the <63 µm size fraction only.

In the absence of sediment guideline values for a particular contaminant, the first recourse is to the water quality guideline values. Sampling and analysis of sediment pore water can be undertaken, and water quality values can be employed to judge its acceptability. Care must be taken that the chemistry of the pore waters is not altered during the sampling process. This means squeezing, or centrifuging the sediment under nitrogen to minimise oxidation. Often it is very difficult to obtain sufficient sample to undertake a pore water analysis, especially for organic contaminants. In these cases, toxicity testing of the sediment or pore water is the only option.

In relation to water quality, different levels of protection have been considered for particular ecosystem conditions (namely high conservation value, slightly to moderately disturbed and highly disturbed). It is not appropriate at this stage to provide guidelines for different levels of protection for sediments, until more data are available. The provision of low and high guideline values, in combination with the decision-tree approach, should nevertheless provide useful guidance about the potential ecological effects of sediment contaminants that can guide management actions, as indicated in table 3.1.2.

Application of toxicity testing

The decision-tree allows for toxicity testing as the ultimate means of assessing sediment quality. Although this is shown at the bottom of the tree, mainly on the basis of its greater cost compared to chemical analyses, it may be applied at any stage. Appropriate methods may include examining the water extractable contaminants (elutriate testing), pore water testing, or whole sediment bioassays. Whole sediment testing with infaunal species has the greatest ecological relevance. Marine and freshwater testing with amphipods have been most widely used, although tests using midge larvae, insects and worms have been reported.\(^a\)

As with chemical testing, is important that the sample used for toxicity testing has the same chemistry as it did in the field situation. Oxidation of sediments during manipulations may significantly alter metal bioavailability.

Normally toxicity testing will be used to demonstrate the absence of toxicity when the guideline for a particular contaminant is exceeded. If toxicity is observed, its origins cannot necessarily be attributed to the contaminant of interest, because of
the possibility of other contaminants either contributing to the observed toxicity or being the primary cause. Under these conditions, it will be necessary to apply TIE procedures (USEPA 1991) which successively separate classes of contaminants and identify any toxicity that they may have caused. Despite a large number of applications of the TIE approach, it is most often ammonia or common pesticides that have been found to be the source of toxicity.
ATTACHMENT 1

CGO ENVIRONMENTAL MANAGEMENT SYSTEM